几类泛函微分方程的周期解

几类泛函微分方程的周期解

论文摘要

本文利用几类非线性泛函分析方法,讨论了一类一般形式的捕食者-食饵模型,一阶和二阶时滞微分系统,一阶和二阶中立型泛函微分方程以及一阶和二阶中立型泛函微分系统,建立了方程或者系统的一个或多个周期解的存在性结论。全文共分六章,主要内容如下: 第一章,介绍了有关泛函微分方程的周期解的发展概况以及本文的主要工作。 第二章,研究了具有Michaelis-Menten型功能反应和储存项的时滞捕食者-食饵生物模型。利用连续性定理和一些分析技巧得到了其至少存在一个正周期解的充分条件。本章中所讨论的模型包含了多种特殊的具有Michaelis-Menten型功能反应项的捕食者-食饵生物模型,因此,我们的结果具有一般性。通过给出两个推论说明,本章的结论可以直接应用到一些特殊生物模型的周期解的存在性研究中。 第三章,首先介绍了Schaefer不动点定理的发展,主要经历三个阶段:Schaefer不动点定理,Burton和Kirk改进的Schaefer不动点定理以及Liu和Li改进的Schaefer不动点定理,然后利用Liu和Li改进的Schaefer不动点定理以及Burton和Kirk改进的Schaefer不动点定理分别考虑了一类一阶中立型泛函微分方程和一阶中立型泛函微分系统,获得了方程和系统具有一个周期解的充分性判据。据我们所知,本章的结果是首次利用分离压缩的Schaefer不动点定理得到的关于中立型泛函微分方程周期解存在性的结论。 第四章,讨论了两类依赖于参数的泛函微分系统,用锥上的Deimling不动点定理,证明了系统的正周期解的个数与参数的取值以及非线性项的渐近行为有关。首先研究了一类依赖于参数的具有反馈控制的非线性泛函微分系统,获得了系统存在一个正周期解以及两个正周期解的充分条件。再者,讨论了依赖于两个正参数的二阶半线性微分系统,建立了系统存在正周期解的结论,并且证明了存在二维平面中的连续曲线Г使得:对任意位于Г下方的点,系统至少具有一个正周期解;对任意Г上方的点,系统没有正周期解。关于二阶微分系统的结果,实际上是得到了二阶半线性微分系统的一个局部分支,但是用我们的方法比用分支理论得到分支要简单的多。据我们所知,这是用锥上的Deimling不动点定理得到二阶微分系统的分支的最早的工作。 第五章,用锥上的Deimling不动点定理分别讨论了依赖于参数的一阶中立型泛函微分方程和一阶中立型泛函微分系统,导出了一阶中立型泛函微分方程以及一阶中立型泛函微分系统存在两个正周期解,存在一个正周期解以及不存在正周期解的充分条件。当中立项是零时,我们获得的结果与已存在的相应结果一致。

论文目录

  • 学位论文原创性声明和学位论文版权使用授权书
  • 摘要
  • Abstract
  • 第1章 前言
  • 1.1 泛函微分方程周期解的历史背景
  • 1.2 论文的主要内容
  • 1.3 预备知识
  • 第2章 Michaelis-Menten型捕食者-食饵系统的正周期解
  • 2.1 引言
  • 2.2 Michaelis-Menten型捕食者-食饵系统的正周期解
  • 第3章 中立型泛函微分方程的周期解
  • 3.1 引言
  • 3.2 一阶有限时滞中立型泛函微分方程的周期解
  • 3.3 一阶有限时滞中立型泛函微分系统的周期解
  • 第4章 含参数的时滞微分系统的正周期解
  • 4.1 引言
  • 4.2 具有反馈控制的非线性微分系统的两个正周期解
  • 4.3 具有两个参数的二阶半线性微分系统的正周期解
  • 4.3.1 假设及引理
  • 4.3.2 正周期解的存在性以及不存在性
  • 4.3.3 应用举例
  • 第5章 一阶中立型泛函微分系统的两个正周期解
  • 5.1 引言
  • 5.2 一阶中立型泛函微分方程的两个正周期解
  • 5.2.1 假设及引理
  • 5.2.2 一阶中立型泛函微分方程的两个正周期解
  • 5.3 一阶中立型泛函微分系统的两个正周期解
  • 5.3.1 假设及引理
  • 5.3.2 单个正周期解的存在性以及不存在性
  • 5.3.3 两个正周期解的存在性
  • 第6章 二阶中立型泛函微分系统的两个正周期解
  • 6.1 二阶中立型泛函微分方程的两个正周期解
  • 6.1.1 假设及引理
  • 6.1.2 二阶中立型泛函微分方程的两个正周期解
  • 6.2 二阶中立型泛函微分系统的两个正周期解
  • 6.2.1 假设及引理
  • 6.2.2 单个正周期解的存在性
  • 6.2.3 两个正周期解的存在性
  • 6.2.4 应用举例
  • 结论
  • 参考文献
  • 附录A (攻读学位期间所发表和投稿的学术论文目录)
  • 致谢
  • 相关论文文献

    • [1].一类脉冲随机泛函微分方程的分布稳定性分析[J]. 数学杂志 2020(02)
    • [2].无穷时滞脉冲随机泛函微分方程一般衰减意义下p阶矩稳定性[J]. 湖北大学学报(自然科学版) 2020(04)
    • [3].三阶时滞泛函微分方程的振动性[J]. 山西师范大学学报(自然科学版) 2020(03)
    • [4].几类泛函微分方程的稳定性比较研究[J]. 重庆工商大学学报(自然科学版) 2019(04)
    • [5].一类二阶具多时滞次二次增长条件泛函微分方程同宿轨的存在性[J]. 汕头大学学报(自然科学版) 2017(01)
    • [6].无限滞后测度泛函微分方程的平均化(英文)[J]. 数学杂志 2017(05)
    • [7].关于脉冲泛函微分方程的一种新比较原理[J]. 江西科学 2015(04)
    • [8].一类二阶迭代泛函微分方程的周期解[J]. 应用数学 2020(02)
    • [9].脉冲中立泛函微分方程概周期解的存在性(英文)[J]. 应用数学 2015(01)
    • [10].脉冲滞后泛函微分方程的平均化(英文)[J]. 应用数学 2015(01)
    • [11].比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报 2015(04)
    • [12].一类奇异泛函微分方程边值问题的多重正解[J]. 数学杂志 2013(01)
    • [13].一阶非线性泛函微分方程的振动准则[J]. 贵州师范大学学报(自然科学版) 2013(05)
    • [14].一类变时滞泛函微分方程的解[J]. 高等数学研究 2012(01)
    • [15].时滞泛函微分方程解的唯一性和渐近性分析[J]. 河北北方学院学报(自然科学版) 2012(05)
    • [16].四阶泛函微分方程边值问题正解的存在性[J]. 高校应用数学学报A辑 2011(01)
    • [17].B空间中无限时滞随机泛函微分方程解的估计(英文)[J]. 应用数学 2011(04)
    • [18].一类二阶时滞泛函微分方程的周期解[J]. 内蒙古大学学报(自然科学版) 2010(01)
    • [19].一类具有分布时滞的二阶泛函微分方程周期解[J]. 哈尔滨商业大学学报(自然科学版) 2009(01)
    • [20].脉冲时滞泛函微分方程正周期解的存在性[J]. 合肥工业大学学报(自然科学版) 2009(04)
    • [21].一类脉冲泛函微分方程周期解的存在性[J]. 安徽大学学报(自然科学版) 2009(03)
    • [22].一类脉冲泛函微分方程正周期解的存在性[J]. 安徽建筑工业学院学报(自然科学版) 2008(05)
    • [23].滞后型脉冲泛函微分方程解对初值的可微性[J]. 科学技术与工程 2008(02)
    • [24].比较原理和带马尔可夫调制的随机泛函微分方程(英文)[J]. 应用数学 2008(04)
    • [25].一阶迭代泛函微分方程的解析解[J]. 科学技术与工程 2008(19)
    • [26].带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版) 2015(06)
    • [27].抽象泛函微分方程的权伪概自守温和解(英文)[J]. 湖南师范大学自然科学学报 2015(05)
    • [28].一类高维脉冲泛函微分方程周期解的存在性(英文)[J]. 生物数学学报 2014(01)
    • [29].一类无限时滞随机泛函微分方程解的存在唯一性[J]. 衡阳师范学院学报 2014(03)
    • [30].一类中立型随机泛函微分方程的稳定性分析[J]. 四川师范大学学报(自然科学版) 2011(04)

    标签:;  ;  ;  ;  ;  

    几类泛函微分方程的周期解
    下载Doc文档

    猜你喜欢