论文摘要
有限棱柱法将Fourier级数与有限单元组合起来构造常截面三维有限棱柱单元,由于该方法运用Fourier级数具有解耦特性,因而可将三维问题转化为一系列二维问题求解。本文给出了运用有限棱柱法求解在均布荷载和集中荷载作用下直板和曲板静力问题的解以验证该方法的精度。本文还将有限棱柱法运用到三维直线型和曲线型箱梁和板梁桥梁的静力分析中,并将本文结果与文献结果进行了比较以验证本文方法的可靠性。
论文目录
ACKNOWLEDGMENTABSTRACT摘要CONTENTSLIST OF FIGURESNOTATIONSCHAPTER(1):Introduction1.1 PREFACE1.2 Objective of the study1.3 Concluding RemarksCHAPTER(2):Literature Review2.1 Historical background.2.2 Types of Bridges2.3 Some Method of Analysis2.3.1 Static Analysis of Bridges2.4 Finite Prism Method2.5 Concluding RemarksCHAPTER(3) Finite Prism Formulation3.1 Introduction3.2 Finite Prism Idealization3.3 Static Analysis of Bridges3.3.1 Displacement Function3.3.2 Strains3.3.3 Stresses3.4 Formulation of The Stiffness And ForceMatrices3.4.1 Stiffness Matrix3.4.2 Force Matrices3.5 Numerical Evaluation of The Integrals3.6 Formulation of Curved Prism Element3.6.1 Displacement Function3.6.2 Strains3.6.3 Stresses3.8 Concluding RemarksCHAPTER(4) Assessment of The Method4.1 Introduction4.2 Static Analysis4.2.1 Simply Supported Curved Plate Subjected to Concentrated Loads4.2.2 Simply Supported Square Isotropic Square Plate Subjected to Uniformly Distributed Load4.2.3 Simply Supported Twin-Cell Box Girder Bridge Curved In Plan4.2.4 Straight Twin Cell Box Girder Bridge4.2.5 Simply Supported Deck Girder BridgeConcluding RemarksCHAPTER(5) Conclusions And Recommendations5.1 Summary5.2 Conclusions5.3 RecommendationsREFERENCES
相关论文文献
标签:有限单元论文; 有限棱柱论文; 级数论文;