纳米氧化锌的形貌控制及性能研究

纳米氧化锌的形貌控制及性能研究

论文摘要

纳米氧化锌(ZnO)作为一种新型多功能无机材料,在很多领域有着广阔的应用前景,尤其是在与人类生存和健康密切相关的光催化降解有机物污染和抗菌方面有着独特的优势。如何将光催化降解性能和抗菌性能结合起来是目前研究纳米氧化锌应用的一个重要分支,然而纳米氧化锌作为光催化材料和抗菌剂国内仍处于研究阶段。控制纳米氧化锌的形貌、在氧化锌表面吸附金属单质或晶格中掺入外来元素都会改变氧化锌本体的很多性能,如缺陷浓度、颗粒大小等,而这些因素会在一定程度上提高氧化锌的物理和化学性能。本文基于这一点,采用直接沉淀法和溶胶法制备特定形貌的纳米ZnO粉体和采用金属单质吸附到氧化锌表面形成金属-ZnO异质结粉体,拟通过控制形貌和形成异质结来提高纳米氧化锌的光催化和抗菌性能。首先概述了ZnO在光催化和抗菌方面的研究进展以及纳米ZnO的制备方法,重点回顾了液相法制备特定形貌的纳米氧化锌的研究进展。然后采用直接沉淀法和溶胶法分别制备不同形貌纳米ZnO和纳米金属-ZnO异质结,研究了制备工艺参数和金属吸附对粉体的形貌、颗粒大小、结构和缺陷浓度的影响。最后,研究了不同形貌的纳米ZnO粉体和金属-ZnO异质结粉体的光催化和抗菌性。主要研究包括以下几个方面:通过直接沉淀法,制备了三种形貌的纳米氧化锌粉体;并研究了反应温度、溶液的PH值、不同锌盐和表面活性剂对纳米氧化锌形貌的影响。用NaOH作为沉淀剂,未加表面活性剂的条件下制备了柱状纳米氧化锌粉体,实验结果显示:纤锌矿结构的氧化锌晶体,长度方向上增长比直径方向上增长所需要能量少,生长更快。因此,反应温度从60℃升高到90℃,制备氧化锌的溶液中反应分子能量升高,使得生成氧化锌的趋势变大,氧化锌形貌从短柱状变为长柱状;溶液中阴离子离子半径大小顺序为:CH3CO2->SO42->NO3->Cl-,离子半径越大,在氧化锌(0001)晶面上吸附量越少,对氧化锌(0001)晶面生长速度抑制越弱,其抑制顺序为:CH3CO2-<SO42-<NO3-<Cl-,选用的锌盐不同,粉体形貌从针状(以Zn(Ac)2·2H2O制备)变化到柱状(以ZnSO4制备),然后到笋状(以Zn(NO3)2·6H2O制备),最后为短柱状(以ZnCl2制备),其中长径比分别为6.5:1—5:1—3.5:1—2:1。随着溶液PH值从酸性到碱性变化,粉体形貌从类球状变为柱状;溶液的强碱性进一步增加,粉体形貌从柱状转变成星状。用氨水作为沉淀剂,未加表面活性剂的条件下制备了花状纳米氧化锌粉体,并用XRD和荧光光谱研究了煅烧前后的花状纳米氧化锌粉体性能变化,结果表明:煅烧后氧化锌结晶度提高,晶体缺陷和表面杂质减少,但氧化锌晶粒增大和比表面积减小,因此,如能结合其他工艺,在煅烧前后氧化锌晶粒大小和比表面积变化不大的情况下,煅烧工艺能改善纳米氧化锌粉体的光催化性能;煅烧工艺却大大降低了纳米氧化锌粉体的抗菌性能。为了制备出光催化性能和抗菌性能都较好的氧化锌粉体,以下在制备和改性氧化锌粉体时均不采用煅烧工艺。通过升高反应溶液的PH值,得到微米花状氧化锌粉体。用NaOH作为沉淀剂,以柠檬酸钠(NaCA)为表面活性剂制备了片状纳米氧化锌。反应过程中,柠檬酸根和锌离子形成螯合物,抑制了纳米氧化锌的(0001)晶面生长,使得最终形貌为片状。升高温度,得到微米级片状氧化锌粉体。在此基础上,研究了三种形貌(柱状、花状和片状)的纳米氧化锌粉体的可见荧光性能,结果显示:由于柠檬酸根包覆到片状氧化锌表面,补偿了ZnO粉体表面的一些悬键,减少了结构缺陷,片状氧化锌的可见荧光强度最低,样品的缺陷最少,但柠檬酸根包覆会引起氧化锌粉体比表面积减小。为了制备颗粒尺寸更小的纳米氧化锌粉体,采用溶胶法制备出了不同溶剂中氧化锌溶胶,结果显示:水溶胶中颗粒尺寸较大,稳定性较差,表面存在表面活性剂的包覆,粉体的比表面积变小;醇溶液中溶胶颗粒尺寸较小,稳定性较好,无表面活性剂的包覆,粉体的比表面积变化不大,因此,改性制备和性能分析时均不采用加入表面活性剂工艺。对比醇溶剂(甲醇、乙醇和异丙醇)中氧化锌溶胶紫外吸收峰,乙醇中吸收峰最尖锐,半导体特征最明显,且乙醇毒性小,因此选用乙醇作为溶胶法制备氧化锌的溶剂。以下制备工艺中为了方便比较和讨论,在样品比表面积变化不大的基础上,依靠吸附、小尺寸效应和减少样品的缺陷浓度等手段对氧化锌粉体进行改性。以甲基橙和大肠杆菌为模型来研究所制备粉体的光催化和抗菌性能。直接沉淀法制备出的三种形貌(柱状、花状和片状)纳米氧化锌粉体中,为了方便比较,研究了其中两种未加表面活性剂的纳米粉体(柱状、花状)光催化性能,结果显示:柱状氧化锌粉体颗粒尺寸较小,比表面积较大,表面的光催化活性点较多,光催化效率比花状粉体高。溶胶法制备出的纳米ZnO粉体晶粒(8.2 nm)比直接沉淀法(55 nm)制备出的粉体晶粒小,因此,溶胶法制备出的粉体光催化降解率较大,紫外光条件下粉体光催化降解率达到92%,而直接沉淀法制备出的柱状粉体光催化降解率为24%。溶胶法制备出的粉体比直接沉淀法制备出的粉体缺陷浓度大,两种方法制备出的粉体光催化实验结果说明,晶粒大小或颗粒大小以及比表面积大小比缺陷浓度多少对氧化锌粉体光催化性能的影响大。颗粒团聚对溶胶法制备出的纳米ZnO粉体光催化降解率影响较大,粉体在室温下水溶液中放置24 h,粉体产生团聚,紫外光条件下氧化锌粉体的光催化降解率从92%下降到56%。对大肠杆菌实验表明,直接沉淀法制备出的两种形貌(柱状、花状)纳米氧化锌粉体中,柱状氧化锌粉体颗粒尺寸小,光催化性能好,很容易吸附沉积到细菌体内而更有效地杀灭细菌,因此柱状粉体比花状粉体抗菌效果较好,其MIC为50 ppm。溶胶法制备出的粉体晶粒(8.2 nm)比直接沉淀法制备出的晶粒(55 nm)小,光催化效率高,但粉体在抗菌测试过程中易团聚(光催化测试时,粉体在水中搅拌,相对于抗菌测试时团聚较少),而缺陷对抗菌性能影响不大,溶胶法制备出的粉体的抗菌性能和直接沉淀法差别不大,其MIC也为50 ppm。为了提高氧化锌粉体的光催化效率和抗菌性能,以光催化性能和抗菌性能均较好的溶胶法工艺为基础,制备出掺铜纳米氧化锌粉体。由于低掺杂量(<5.0%)下掺杂粉体的可见荧光强度增强,缺陷增多;掺杂使得粉体能带宽度变化较小,仍只能吸收紫外区光源,对光催化性能的改善贡献较小;而在高掺杂量(>7.5%)下,粉体物相发生改变,粉体表面有氧化铜相出现,很难再通过该方法实现将铜掺杂进氧化锌晶格中,因此,采用本实验工艺条件下掺杂铜不适合提高溶胶法制备的氧化锌粉体的光催化性能。缺陷多少对掺杂氧化锌粉体抗菌性能影响不大,但缺陷增多,粉体的光催化途径杀菌效果会降低,而高掺杂量下吸附在氧化锌表面的氧化铜,在氧化物粉体中的抗菌性能最差,因此,采用本实验工艺条件下掺杂铜对抗菌性能的提高意义不大。银吸附不仅可改善氧化锌表面的电荷分离效率、减少氧化锌粉体缺陷而且银本身就是极好的抗菌材料,因此为了改善氧化锌粉体的光催化和抗菌性能,选取直接沉淀法和溶胶法制备氧化锌中性能最佳的工艺为基础,分别制备出纳米Ag-ZnO异质结粉体。由于两种方法制备出的粉体颗粒大小、缺陷多少的不同,两种方法制备出的异质结粉体的光催化效率不同,实验显示:溶胶法制备出的异质结粉体光催化效率明显高于直接沉淀法制备出的粉体;溶胶法制备出粉体的光催化效率随着硝酸银加入量的增加而提高,自然光条件下光催化降解率最大达到85%,光催化降解率比溶胶法制备出的纯纳米氧化锌提高了20%;而直接沉淀法制备出的异质结粉体光催化降解率则随着硝酸银加入量的增加,先减小后增加,紫外光条件下光催化降解率最大达到30%。用直接沉淀法和溶胶法两种方法制备出的异质结粉体抗菌实验结果均显示:由于异质结中银与氧化锌具有协同杀菌的作用,随着硝酸银加入量的增加,粉体的抗菌效果变好,样品的MIC从50 ppm下降到6.25 ppm;且溶胶法制备出异质结粉体的颗粒尺寸(~10 nm)较小,颗粒越小越容易吸附到细菌的细胞壁表面,通过吸附沉积杀菌,且颗粒越小,比表面积越大,越有利于光催化杀菌。因此,在硝酸银的加入量相同的条件下,溶胶法制备出的异质结粉体的比直接沉淀法制备出的粉体抗菌效果好。直接沉淀法制备出的异质结粉体的光催化性能和抗菌性能随硝酸银加入量的增加,变化趋势不一致。这主要是直接沉淀法制备异质结粉体的过程中,银掺杂和银吸附是一对竞争过程同时存在。银掺杂随着硝酸银和还原剂加入量的增加,比重越来越小,但银掺杂导致粉体缺陷增多;而银吸附随着硝酸银和还原剂加入量的增加,比重越来越大(由于该实验过程是硝酸银溶液向还原剂溶液中滴加,反应前期随着还原剂的加入量增多,还原滴加的硝酸银概率越大,而掺杂概率越小;且硝酸银加入量越多,滴加时间越长,滴加到后期,溶液中氧化锌生成越多,银掺杂进氧化锌晶体概率更小),银吸附过程逐渐占主导,使得样品缺陷减小,因此,直接沉淀法制备过程中随着硝酸银加入量的增加,异质结粉体缺陷先增多后减少,光催化效率先减小后增大。虽然直接沉淀法制备出的异质结粉体光催化效率不高,异质结粉体通过光催化杀菌效果不佳,但银的抗菌效果优于氧化锌,银吸附能从根本上提高氧化锌粉体的抗菌性能,而银掺杂导致粉体缺陷增多对抗菌性能的影响不大,因此,随着硝酸银加入量的增加,直接沉淀法制备出的异质结粉体抗菌性能一直增强。溶胶法制备出的纳米氧化锌粉体添加到塑料薄膜中,并研究其对大肠杆菌的杀菌性能,结果显示:在大肠杆菌浓度为105cfu/ml时,塑料薄膜对其24小时杀菌率达到99%以上,加工出的塑料薄膜对大肠杆菌生长有很强的抑制作用。

论文目录

  • 摘要
  • Abstract
  • 1 绪论
  • 1.1 引言
  • 1.2 氧化锌在光催化方面的研究概况
  • 1.3 氧化锌在抗菌方面的研究概述
  • 1.4 纳米氧化锌主要制备方法
  • 1.5 抗菌剂抗菌性能的评价
  • 1.6 本课题的研究目的和研究内容
  • 2 直接沉淀法形貌控制制备纳米氧化锌
  • 2.1 前言
  • 2.2 纳米氧化锌粉体的制备过程
  • 2.3 柱状纳米氧化锌粉体的制备
  • 2.4 花状纳米氧化锌的制备
  • 2.5 片状纳米氧化锌粉体的制备
  • 2.6 三种形貌纳米氧化锌粉体荧光性能研究
  • 2.7 本章小结
  • 3 溶胶法制备小尺寸纳米氧化锌
  • 3.1 前言
  • 3.2 不同溶剂中纳米氧化锌的制备
  • 3.3 不同的制备工艺对溶胶法制备纳米氧化锌粉体形貌的影响
  • 3.4 本章小结
  • 4 氧化锌粉体的光催化和抗菌性能研究
  • 4.1 前言
  • 4.2 实验部分
  • 4.3 氧化锌光催化性能的影响因素
  • 4.4 直接沉淀法纳米氧化锌粉体光催化性能
  • 4.5 溶胶法制备纳米ZnO光催化性能
  • 4.6 直接沉淀法制备出和溶胶法制备出的纳米氧化锌粉体光催化性能比较
  • 4.7 影响氧化锌粉体的抗菌性能的因素
  • 4.8 直接沉淀法制备出粉体的抗菌性能
  • 4.9 直接沉淀法和溶胶法制备出的纳米氧化锌粉体抗菌性能(MIC)比较
  • 4.10 本章小结
  • 5 掺杂纳米氧化锌和金属-氧化锌异质结粉体的制备及性能研究
  • 5.1 前言
  • 5.2 掺杂纳米氧化锌的制备
  • 5.3 异质结粉体的制备和光催化性能研究
  • 5.4 异质结粉体的抗菌性能研究
  • 5.5 氧化锌粉体的应用——抗菌薄膜的制备及性能测试
  • 5.6 本章小结
  • 6 全文总结及展望
  • 6.1 全文结论
  • 6.2 展望
  • 致谢
  • 参考文献
  • 附录 攻读学位期间发表论文目录
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  ;  

    纳米氧化锌的形貌控制及性能研究
    下载Doc文档

    猜你喜欢