移动磁场作用下钢液湍流的大涡模拟及气液两相流行为的研究

移动磁场作用下钢液湍流的大涡模拟及气液两相流行为的研究

论文摘要

作为提高金属冶炼效率,改善产品质量的有效辅助手段,电磁场已在冶金领域得到广泛发展。行波磁场与旋转磁场均属于移动磁场范畴。本文运用现代流体力学的方法结合电磁场理论研究电磁场作用于冶金反应器内钢液流动的冶金特性,利用大涡模拟方法(Large eddy simulation-LES)揭示了不同磁场条件下冶金反应器内的流动规律。研究内容及取得的主要结果包括:(1)行波磁场作用下圆柱型反应器内液体的运动规律行波磁场被广泛应用于改善金属精炼与凝固质量,但对行波磁场作用下金属传输行为的认识尚不完善,制约了行波磁场的进一步应用。本文将描述行波磁场的麦克斯韦方程与流体流动N-S方程相结合,建立了计算行波磁场作用下圆柱型冶金反应器内三维流场的数学模型。通过对典型物理过程进行模拟分析,得到的结果与文献中提供的实验结果吻合良好,证明了本模型和编制的计算程序的可靠性。数值分析结果表明:行波磁场作用下圆柱型反应器内的主截面上形成了两个对称的旋涡。当径高比降低时,反应器内的流场结构没有改变,为两个对称的旋流,形状由圆形变成长方形。当电磁力增大时,轴向方向速度曲线则由平顶变为尖顶的抛物线,并且电磁力越大,波顶离底部壁面的距离越近。(2)离心式中间包钢液流动的大涡模拟和物理模型试验离心式中间包被用于特殊钢连铸工艺中,具有有效排除钢液中夹杂物的优点。但其操作特性仍未被充分掌握。并且电磁驱动旋流的效率较低,对此提出利用弯水口增大离心室内旋流强度的方法。采用自行设计的离心式中间包水模型装置,分析了旋流强度对中间包平均停留时间、死区体积分数等的影响,并对磁场强度进行了参数研究。结果表明:施加旋转磁场能显著地增长中间包的平均停留时间、缩小中间包的死区体积分数,有利于夹杂物的去除;选择离心室出口面积为0.75A时、叶轮转数为46 rpm有利于改善中间包内的流场。离心式中间包内液面下凹深度与叶轮转数的关系很重要。叶轮转速越大,液面下凹深度越大,越可能发生卷渣;但叶轮转速太小,旋流的强度又不够,降低了去除夹杂物的效率。通过拟合得到弯水口注流液面下凹深度和叶轮转速的关系式为:H=-3.17×107 n3+3.684×10-5 n2-0.0001521n,其中:H=h/D,h为下凹深度,D为离心室直径;n为叶轮转数,rpm。发展了大涡模拟方法求解离心式中间包内三维湍流流场。考察了只有弯水口注流,及旋转磁场作用下分别采用直水口、弯水口时离心式中间包内的流场结构和磁场强度对离心式中间包流场结构的影响。结果表明:当磁场强度从0.001T增大到0.004T时,旋流速度的最大值从0.012m/s左右增大到0.04m/s。随磁场强度的增加,旋流速度成线性增加。磁场强度的改变对流场结构的影响很小;本文模拟条件下,旋转电磁力和弯水口共同作用时可使由单纯电磁场产生的最大速度值增加约15%-19%。并得到了试验验证。(3)旋流场内底吹气气液两相流运动行为的数理研究喷气搅拌是炉外精炼中最广泛使用的技术,但突出的问题是氩气比较昂贵,且利用效率低。对此提出利用旋转磁场作用于底吹气冶金反应器的方法。采用室温模型实验,对冶金反应器内气液流动的混合特性进行了物理模型研究。结果表明:底吹气过程中施加旋转磁场能显著缩短反应器内液体的混匀时间,细化气泡并延长气泡在反应器内运动路程,更加高效地去除钢液中非金属夹杂物;选择吹气位置为0.5R,叶轮转速为60 rpm,吹气量为0.17m3/h为本试验的最佳值。建立了旋流场底吹气反应器内气-液两相流动模型。考察了底吹气位置和磁场强度对改善反应器内的流动形式和气泡运动行为的影响。结果表明:无底吹气体时,冶金反应器内竖直截面的流场结构为四个对称的旋涡;无旋流时,不断上升的气泡形成“倒锥形”的气柱。在旋转磁场(磁感应强度为0.007T)和底吹气共同作用时,主截面的流场结构发生改变,即旋涡的数量增加,上升的气泡形成了“螺旋状气柱”。当吹气位置离中心的距离从0增大到0.75R时,气泡在冶金反应器内运动的路程呈线性的增加,运动路程最大增加是无旋流时运动路程的1.54倍;当磁场强度从0增大到0.012T时,气泡在冶金反应器运动的路程呈指数形式的增加,运动路程最大增加是无旋流时运动路程的2.21倍。本工作中均采用FORTRAN语言,独自编程。采用有限体积法求解离散后的微分方程。用SIMPLEC法求解过滤后的非线性瞬态方程。利用ADI法和快修正法离散求解代数方程。

论文目录

  • 摘要
  • ABSTRACT
  • 主要符号列表
  • 目录
  • 第1章 绪论
  • 1.1 炉外精炼技术的发展及现状
  • 1.2 电磁场在冶金生产中的应用概况
  • 1.2.1 概述
  • 1.2.2 电磁驱动控制技术的发展概况
  • 1.3 中间包在炉外精炼中的作用
  • 1.3.1 中间包冶金学
  • 1.3.2 中间包湍流控制器的发展与应用
  • 1.3.3 离心式中间包
  • 1.4 吹氩技术在炉外精炼技术中的应用
  • 1.4.1 钢包吹氩精炼
  • 1.4.2 LF炉精炼的钢水吹氩
  • 1.4.3 VOD精炼的钢水吹氩
  • 1.4.4 CAS(OB)精炼的钢水吹氩
  • 1.4.5 RH真空处理钢水吹氩
  • 1.4.6 AOD的钢水吹氩
  • 1.5 本课题研究目标及内容
  • 第2章 冶金反应器内钢液湍流过程的大涡模拟
  • 2.1 湍流模型
  • 2.2 大涡模拟
  • 2.2.1 滤波函数
  • 2.2.2 大涡模拟的控制方程
  • 2.2.3 常用的亚格子尺度模型
  • 2.3 求解方法
  • 2.3.1 求解复杂系统的空度技术
  • 2.3.2 通用方程的离散
  • 2.3.3 SIMPLE-C算法
  • 2.4 本章小结
  • 第3章 行波磁场作用下液体金属运动行为的数值模拟
  • 3.1 引言
  • 3.2 计算对象及网格
  • 3.3 控制方程
  • 3.4 求解方法及边界条件
  • 3.5 数值结果与分析
  • 3.6 本章小结
  • 第4章 离心式中间包的物理模型试验
  • 4.1 引言
  • 4.2 离心式中间包试验装置
  • 4.3 试验方案及RTD曲线分析
  • 4.3.1 试验方案
  • 4.3.2 停留时间分布的测定
  • 4.4 试验结果及分析
  • 4.4.1 离心式中间包内流体流动形式的分析
  • 4.4.2 停留时间曲线分析
  • 4.4.3 离心式中间包平均停留时间的分析
  • 4.4.4 离心式中间包死区体积分数的分析
  • 4.4.5 离心室内液体液面的下凹深度
  • 4.5 本章小结
  • 第5章 离心式中间包钢液流动的大涡模拟
  • 5.1 引言
  • 5.2 数学模型
  • 5.3 旋转磁场的计算公式
  • 5.4 求解方法及边界条件
  • 5.5 数值结果与分析
  • 5.5.1 旋转磁场作用下的流场结构
  • 5.5.2 只有弯水口注流时的流场结构
  • 5.5.3 旋转磁场结合弯水口注流时的流场结构
  • 5.5.4 磁场强度对离心式中间包内流速的影响
  • 5.6 本章小结
  • 第6章 旋流场内底吹气过程的水模型试验
  • 6.1 试验装置及相关设备
  • 6.2 试验方案设计
  • 6.3 试验数据处理与分析
  • 6.3.1 只有底吹气体时改变吹气量对混匀时间的影响
  • 6.3.2 只有搅拌器作用时改变叶轮转速对混匀时间的影响
  • 6.3.3 改变吹气量、吹气位置、搅拌叶轮转速对混匀时间的影响
  • 6.3.4 试验观察
  • 6.4 本章小结
  • 第7章 旋流场内气液两相流行为的模拟分析
  • 7.1 引言
  • 7.2 数学模型的建立
  • 7.3 旋流反应器内的数值模拟结果及分析
  • 7.3.1 无底吹气时反应器内的速度分布
  • 7.3.2 无旋流时的速度分布和气泡运动行为
  • 7.3.3 旋流场内的速度分布和气泡运动行为
  • 7.4 本章小结
  • 第8章 结论
  • 参考文献
  • 致谢
  • 攻读博士期间发表的论文
  • 作者简介
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  

    移动磁场作用下钢液湍流的大涡模拟及气液两相流行为的研究
    下载Doc文档

    猜你喜欢