Buckling Strength Analysis of Stiffened Panels of Ship Structures Using Non-linear FEM

Buckling Strength Analysis of Stiffened Panels of Ship Structures Using Non-linear FEM

论文摘要

加筋板是钢板或者铝合金板板结构中基本的强度单元。船舶和海洋结构物都是由加筋板组成的。加筋的板和壳体单元多年来一直应用于多种工程结构中。在造船工程领域中,加筋板用于船体的建造,而在航空航天领域中,加筋板用于飞机的机身和机翼的建造。所以加筋板的屈曲对整个结构的强度至关重要。船体结构的屈曲和极限强度近年来被广泛研究,主要通过理论分析方法,实船实验,经验公式和非线性有限元计算。理论分析方法采用第一准则并且十分精确,许多的研究已经完成。由于课题的复杂性,理论研究的办法主要处理简单的情况。由于建模和计算的耗时耗力等原因,对于设计要求来说加筋板的非线性有限元计算并不切合实际。在上一个十年中,由于计算机计算能力的提升和技术的普及,能给出特殊载荷下结构准确的力学行为且不受弹性范围的限制的非线性有限元分析变得尤为重要起来。目前研究工作旨在利用现有的有限元软件ANSYS完成对加筋板和平板结构的非线性屈曲分析,并且比较理论分析结果和线性屈曲分析结果。分析计算采用两种方法,一种是基于结构强度理论,一种是船级社的设计规范,如ABS,CSR,等等。非线性屈曲分析可以通过ANSYS软件完成。模型的生成和整个分析过程完全采用APDL (ANSYS参数化语言设计)完成。这种方法的优势在于模型的生成和分析过程更加灵活。并且在改变模型参数需要多次迭代计算的情况下能节省大量时间。分析不同的载况并且最后的结果与其他有名望的研究人的理论分析和有限元分析结构相比较,来检验分析结果的准确性。整个过程证明非线性有限元对于了解结构在不同载况下的屈曲行为非常重要。另外,开发一种新的单元初步应用于半解析有限元技术——理想结构单元法。基于理想结构单元理论,用MATLAB编写了能实现几何非线性平板分析的程序。

论文目录

  • 摘要
  • ABSTRACT
  • CHAPTER 1 INTRODUCTION
  • 1.1 Stiffened Plate and Panels
  • 1.2 Use of Stiffened Panels In Engineering Structures
  • 1.3 Buckling And Ultimate Strength
  • 1.3.1 Buckling
  • 1.3.2 Buckling in Stiffened panels of Ships
  • 1.4 Buckling Strength Analysis Techniques
  • 1.4.1 Analytical Methods
  • 1.4.2 Experimental Tests
  • 1.4.3 Empirical Approaches
  • 1.4.4 Nonlinear Finite Element Methods
  • 1.4.5 Idealized Structural Unit Method (ISUM)
  • 1.5 Historical Background
  • 1.6 Objectives and Scope of Current Work
  • 1.7 Organization Of The Thesis Report
  • CHAPTER 2 STIFFENED PLATE AND PANEL ANALYSIS TECHNIQUES
  • 2.1 Introduction
  • 2.2 Buckling Analysis of Stiffened Panels
  • 2.2.1 Plates And Stiffened Panels in offshore structures
  • 2.2.2 Structural Buckling
  • 2.3 Different Analysis Techniques
  • 2.3.1 Analytical method
  • 2.3.2 Rules laid down by classification societies
  • 2.3.3 Finite element Analysis (FEA)
  • 2.3.4 Types of Finite Element Analysis
  • 2.3.5 Idealized Structural Unit Method (ISUM)
  • CHAPTER 3 THEORETICAL BACKGROUND OF BUCKLING STRENGTH EVALUATION
  • 3.1 Introduction
  • 3.2 Description of the Chosen Panel
  • 3.2.1 Geometrical properties
  • 3.2.2 Material Properties
  • 3.2.3 Loading conditions
  • 3.3 Theoretical And Empirical Formulations For Buckling Strength Evaluation of plate panel
  • 3.3.1 Plate Dimensions
  • 3.3.2 Plate Loading conditions
  • 3.3.3 Boundary Conditions
  • 3.3.4 Elastic buckling of plate under single type of load
  • 3.3.5 Elastic buckling of plate under two load components (Biaxial compression)
  • 3.3.6 Lateral pressure loading in addition to biaxial compression
  • 3.3.7 Elastic-plastic Buckling of plates
  • 3.4 Plate panel Buckling strength Parameters
  • 3.5 Theoretical And Empirical Formulations For Buckling Strength Evaluation of Stiffened Panel
  • 3.5.1 Stiffened Panel Loading conditions
  • 3.5.2 Boundary Conditions for panel
  • 3.5.3 Elastic buckling of Panel under Longitudinal Axial compressive load
  • 3.5.4 Elastic Local Buckling of Plate
  • 3.5.5 Elastic Local Buckling of Stiffener Web
  • 3.5.6 Elastic Local Buckling of Stiffener Flange
  • 3.6 Buckling Analysis Using FEM Techniques
  • 3.7 Buckling Analysis Using ANSYS
  • 3.7.1 GUI Method
  • 3.7.2 Using APDL
  • 3.8 Linear Buckling Analysis
  • 3.8.1 Procedure to perform the Linear Buckling analysis in ANSYS
  • 3.9 Non-Linear Buckling Analysis
  • 3.9.1 Procedure to perform the Non-Linear Buckling analysis in ANSYS
  • CHAPTER 4 LINEAR AND NONLINEAR BUCKLING ANALYSIS & RESULTS
  • 4.1 Introduction
  • 4.2 Specifications of the Stiffened Panel and Plate Panel
  • 4.3 Initial Imperfections
  • 4.4 Linear (Eigenvalue) analysis of Plate Panel:
  • 4.4.1 Pre-processing
  • 4.4.2 Solution Phase
  • 4.4.3 Post-Processing
  • 4.5 Nonlinear analysis of Plate Panel
  • 4.6 Generation of imperfections for nonlinear analysis
  • 4.7 Running the Nonlinear Buckling Analysis
  • 4.8 Buckling strength under longitudinal stress with lateral pressure
  • 4.8.1 Buckling strength of plate panel under biaxial loading
  • 4.9 Linear (Eigenvalue) analysis of stiffened Panel
  • 4.9.1 Finite Element Model Details
  • 4.10 Discussion on Results
  • CHAPTER 5 DEVELOPMENT OF ISUM UNIT
  • 5.1 The background
  • 5.1.1 Types of Nonlinearities
  • 5.2 Idealized structural unit method (ISUM)
  • 5.3 Modelling strategies for steel plated structures using ISUM
  • 5.4 Procedure for development of ISUM units
  • 5.5 Development of the ISUM rectangular plate unit for analysis of ultimate strength
  • 5.6 Theoretical background
  • 5.7 Strain-displacement relationship
  • 5.8 The Elastic tangent stiffness matrix [K]E
  • 5.9 Total lagrangian approach
  • 5.10 The Updated Lagrangian Approach
  • 5.11 Formulation For the ISUM Unit
  • 5.11.1 Shape Function
  • 5.11.2 Derivation of strain-displacement matrix Bp and Bb
  • 5.11.3 Solution of the Nonlinear set of equations:
  • 5.12 Discussion on Improvement of Element
  • CONCLUDING REMARKS AND FUTURE RECOMMENDATIONS
  • Concluding Remarks
  • Recommendations for Future Work
  • REFERENCES
  • ACKNOWLEDGEMENTS
  • 相关论文文献

    • [1].Size-dependent shear buckling response of FGM skew nanoplates modeled via di?erent homogenization schemes[J]. Applied Mathematics and Mechanics(English Edition) 2020(04)
    • [2].Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model[J]. Applied Mathematics and Mechanics(English Edition) 2020(02)
    • [3].Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness[J]. Applied Mathematics and Mechanics(English Edition) 2020(05)
    • [4].A procedure of the method of reverberation ray matrix for the buckling analysis of a thin multi-span plate[J]. Applied Mathematics and Mechanics(English Edition) 2020(07)
    • [5].Analytical solutions for buckling of size-dependent Timoshenko beams[J]. Applied Mathematics and Mechanics(English Edition) 2019(07)
    • [6].Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates[J]. Theoretical & Applied Mechanics Letters 2016(06)
    • [7].Interactive buckling of an inflated envelope under mechanical and thermal loads[J]. Acta Mechanica Sinica 2017(01)
    • [8].Thermal buckling and postbuckling of FGM circular plates with in-plane elastic restraints[J]. Applied Mathematics and Mechanics(English Edition) 2017(10)
    • [9].Local buckling analysis of biological nanocomposites based on a beam-spring model[J]. Theoretical & Applied Mechanics Letters 2015(04)
    • [10].Scale effects on nonlocal buckling analysis of bilayer composite plates under non-uniform uniaxial loads[J]. Applied Mathematics and Mechanics(English Edition) 2015(01)
    • [11].Vibration and buckling analyses of nanobeams embedded in an elastic medium[J]. Chinese Physics B 2015(09)
    • [12].均布外压下球形封头屈曲特性研究(英文)[J]. Journal of Marine Science and Application 2020(01)
    • [13].Adhesion-governed buckling of thin-film electronics on soft tissues[J]. Theoretical & Applied Mechanics Letters 2016(01)
    • [14].Influence of the connecting condition on the dynamic buckling of longitudinal impact for an elastic rod[J]. Acta Mechanica Solida Sinica 2017(03)
    • [15].Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables[J]. Acta Mechanica Sinica 2017(05)
    • [16].Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method[J]. Applied Mathematics and Mechanics(English Edition) 2016(04)
    • [17].Two-dimensional analyses of delamination buckling of symmetrically cross-ply rectangular laminates[J]. Applied Mathematics and Mechanics(English Edition) 2013(05)
    • [18].Asymptotic analysis of nonlinear micro-film buckling[J]. Science China(Technological Sciences) 2012(07)
    • [19].Influence of elastic foundations and carbon nanotube reinforcement on the hydrostatic buckling pressure of truncated conical shells[J]. Applied Mathematics and Mechanics(English Edition) 2020(07)
    • [20].Buckling and post-buckling behavior of titanium alloy stiffened panels under shear load[J]. Chinese Journal of Aeronautics 2019(03)
    • [21].Thermal Buckling Analysis of Size-Dependent FG Nanobeams Based on the Third-Order Shear Deformation Beam Theory[J]. Acta Mechanica Solida Sinica 2016(05)
    • [22].Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects[J]. Acta Mechanica Solida Sinica 2017(02)
    • [23].Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material[J]. Chinese Journal of Aeronautics 2016(04)
    • [24].Limit point buckling of a finite beam on a nonlinear foundation[J]. Theoretical & Applied Mechanics Letters 2014(03)
    • [25].Dynamic shell buckling behavior of multi-walled carbon nanotubes embedded in an elastic medium[J]. Science China(Physics,Mechanics & Astronomy) 2013(03)
    • [26].Crack buckling in soft gels under compression[J]. Acta Mechanica Sinica 2012(04)
    • [27].Controlled buckling of thin film on elastomeric substrate in large deformation[J]. Theoretical & Applied Mechanics Letters 2011(02)
    • [28].xperimental investigation on cumulative propagation of thin film buckling under cyclic load[J]. Science China(Technological Sciences) 2011(06)
    • [29].Development and subassemblage cyclic testing of hybrid buckling-restrained steel braces[J]. Earthquake Engineering and Engineering Vibration 2020(04)
    • [30].Thermal buckling analysis of functionally graded cylindrical shells[J]. Applied Mathematics and Mechanics(English Edition) 2017(08)

    标签:;  ;  ;  ;  

    Buckling Strength Analysis of Stiffened Panels of Ship Structures Using Non-linear FEM
    下载Doc文档

    猜你喜欢