立方氮化硼仿生耐磨复合材料的制备及其研究

立方氮化硼仿生耐磨复合材料的制备及其研究

论文摘要

生物体表具有不同尺度的自组装多级结构,并且大部分属于有机/无机复合材料,有机材料具有极好的塑性和韧性,无机材料具有较高的硬度,有机材料与无机材料耦合构建的复合材料具有高的硬度和良好的耐磨性。基于国家自然科学基金重点项目“机械仿生耦合设计原理与关键技术”提出的仿生耦合设计理论,生物体通过不同的形态、结构、材料和构成等彼此之间的耦合作用而达到生物功能最优化、对环境适应最佳化和能量消耗最低化。本文综合成分、材料和结构等多因素的作用,开展了钎焊技术和SPS技术制备c-BN仿生耐磨复合材料的研究。c-BN超硬材料为无机非金属粉末晶体在一定条件下形成的多晶聚集体,其电子配位非常稳定,钎焊法制备c-BN仿生耐磨复合材料的关键是液态钎料必须能够润湿c-BN颗粒表面。试验结果表明,Ag基活性钎料对c-BN颗粒具有良好的润湿性。系统研究了钎料成分与钎焊工艺参数(钎焊温度,保温时间,钎焊真空度等)对c-BN颗粒钎焊性能的影响规律。采用熔炼钎料和粉末钎料钎焊制备c-BN仿生耐磨复合材料,试验发现,活性钎料熔炼后,熔炼钎料中Ti元素的活性要低于粉状钎料中Ti元素的活性。同一成分的活性钎料熔炼后,钎料对c-BN的焊接性降低。AgCuTi8Sn2粉状钎料在钎焊温度为950℃,保温时间为20min的条件下,可实现Ag基活性钎料、c-BN颗粒与基体金属三者间的可靠连接,制备的c-BN仿生耐磨复合材料试件成型性好、表面平整、颗粒分布均匀。c-BN仿生耐磨复合材料试件固定在划痕试验机施加100N的载荷,无c-BN颗粒脱落现象。通过热力学理论计算并结合试验结果,揭示了Ag及活性钎料与c-BN界面间反应作用机制和对c-BN润湿性的变化规律。基于对Ag基活性钎料钎焊制备c-BN仿生耐磨复合材料的研究基础和存在的问题,试验采用Cu基高温活性钎料钎焊制备c-BN超硬复合材料。Cu基钎料的价格低,强度高,高温性能好,以Cu及Cu-Ni为基的合金系中,在c-BN聚晶片表面上的润湿角85°一120°,属于不完全润湿。Cu基高温活性钎料钎焊制备的c-BN超硬复合材料试件表面呈现暗褐色,复合材料整体结构较疏散。划痕试验结果,制备的c-BN仿生耐磨复合材料结合强度较低,颗粒易脱落。Cu基钎料中添加Ti元素对c-BN颗粒的润湿性得到一定的提高;添加Sn利于改善c-BN仿生耐磨复合材料的表面成型质量。采用混料试验方法优化Cu基活性钎料成分,建立合金元素含量与钎料性能的回归方程,并用此模型进行优化。Cu基活性钎料钎焊c-BN聚晶片与45钢异质材料接头抗剪强度达到210Mpa—220Mpa,在c-BN聚晶片表面润湿角达到25°—35°。研究揭示了Cu基活性钎料的润湿c-BN颗粒机制及其与c-BN颗粒的界面微观结构。Cu基活性钎料润湿c-BN为化学润湿,在钎料与c-BN界面处发生化学反应。扫描电镜和能谱分析结果表明,Cu基活性钎料与c-BN颗粒之间相互作用显著,界面处有一连续的反应薄层,活性元素Ti发生了明显的富集,浓度达到了18.70%,高于Cu基活性钎料中Ti元素的含量。界面反应产物为Ti-N和Ti-B化合物。正是由于钎料与c-BN颗粒界面反应化合物的形成,从而促进了Cu活性钎料对c-BN超硬材料的润湿与结合。系统研究了钎料和c-BN颗粒体积百分比含量对c-BN仿生耐磨复合材料内部结合强度和耐磨性的影响规律。提高c-BN仿生耐磨复合材料中c-BN颗粒的体积百分比含量有助于提高材料的耐磨性,与此同时影响c-BN仿生耐磨复合材料中钎料与c-BN颗粒的结合强度,最终结果影响耐磨性。研究揭示,c-BN仿生耐磨复合材料中的钎料和c-BN颗粒增强硬质相在力学性能上相差较大,当c-BN仿生耐磨复合材料受到外界作用力(拉力、冲击力、摩擦力等)作用时,不能均衡承载,c-BN仿生耐磨复合材料的内部结合强度低于钎料自身的强度与钎料和钢基体的结合强度,导致c-BN颗粒增强硬质相脱落,使c-BN仿生耐磨复合材料失去其预定效能。钎料与c-BN颗粒体积百分比含量对c-BN仿生耐磨复合材料的结合强度和耐磨性试验和建立的力学模型分析结果表明,c-BN颗粒含量在40%—50%时,c-BN仿生耐磨复合材料的内部结合强度与耐磨性最好,在同等试验条件下的耐磨性是45钢淬火标样的12.34倍,结合强度达到182Mpa-187Mpa。基体材料耐磨性差导致c-BN颗粒的脱落是c-BN仿生耐磨复合材料失效的主要原因之一。钎焊法制备的c-BN仿生耐磨复合材料,Cu基活性钎料凝固后的组织为铸态组织,组织较疏松,耐磨性较差,在磨损过程中先期被磨损掉,高硬度的c-BN颗粒则相对突起形成非光滑表面,抵抗磨粒的磨损,在外部作用力较大的情况下将导致c-BN颗粒的脱落,降低c-BN仿生耐磨复合材料的耐磨性。基于放电等离子烧结技术特点,试验开展放电等离子烧结技术制备c-BN仿生耐磨复合材料。研究工艺参数对SPS技术制备c-BN仿生耐磨复合材料性能的影响规律。烧结工艺参数(温度、压力、时间)、材料(c-BN颗粒大小、c-BN颗粒体积百分比含量与基体合金力学性能)与外界工况条件等多种因素对其性能都有影响。研究结果表明,烧结工艺参数是可控因素,直接影响c-BN仿生耐磨复合材料内在质量。试验采用正交多项式回归设计方法,建立起了各参数与c-BN仿生耐磨复合材料性能之间的回归方程,研究各因素对性能影响的权重,并用此模型进行优化,确定SPS技术制备c-BN仿生耐磨复合材料的最优工艺参数,轴向压力28Mpa—33Mpa、烧结温度780℃—800℃、保温时间4.6mmin—5min。SPS技术制备c-BN仿生耐磨复合材料,合金中活性元素Ti也能与c-BN之间有化学反应发生,通过反应在c-BN表面分解形成新相。更重要的一点是SPS技术制备的c-BN仿生耐磨复合材料,基体合金凝固后的组织得到改善,颗粒均匀地分布在基体合金上;制备温度较低,降低内部的残余应力,避免c-BN颗粒的破碎,提高c-BN颗粒与基体合金的结合强度,耐磨性要优于钎焊法制备c-BN仿生耐磨复合材料的耐磨性,其耐磨性为同等条件下淬火45钢的14.73倍。SPS技术制备的c-BN仿生耐磨复合材料在摩擦热作用下,对偶件与c-BN仿生耐磨复合材料有很强的粘结作用,c-BN仿生耐磨复合材料的磨损主要形式为粘着磨损,并伴有磨粒磨损和疲劳磨损。试验初步探讨了通过SPS技术实现c-BN颗粒、Cu基活性合金及其与45钢之间的一体化烧结,实现粉体与钢基体同步焊接研究,为研发仿生耐磨复合材料和其它难焊材料提供新的方法。

论文目录

  • 摘要
  • ABSTRACT
  • 第1章 绪论
  • 1.1 引言
  • 1.2 c-BN超硬材料的研究进展
  • 1.2.1 c-BN的结构
  • 1.2.2 c-BN的性能
  • 1.2.3 c-BN颗粒合成工艺
  • 1.2.4 c-BN薄膜的制备
  • 1.2.5 纳米c-BN超硬材料的制备
  • 1.3 c-BN制品技术研究进展
  • 1.3.1 气相沉积技术
  • 1.3.2 烧结技术
  • 1.3.3 电镀技术
  • 1.3.4 钎焊法
  • 1.4 放电等离子烧结技术(SPS)研究进展
  • 1.4.1 SPS的发展与应用
  • 1.4.2 SPS技术烧结原理与特点
  • 1.5 仿生材料研究
  • 1.5.1 仿贝壳珍珠层的陶瓷增韧复合材料
  • 1.5.2 骨骼的哑铃状结构及其仿生材料
  • 1.5.3 竹子的结构及其仿生复合材料
  • 1.6 本文主要研究内容
  • 第2章 钎焊法制备c-BN仿生耐磨复合材料
  • 2.1 仿生耐磨复合材料结构设计原则
  • 2.2 试验材料
  • 2.3 试验方法
  • 2.3.1 试验设备
  • 2.3.2 钎焊工艺参数
  • 2.3.3 钎焊试验
  • 2.3.4 润湿性试验和划痕试验
  • 2.3.5 界面组织分析
  • 2.4 AG基钎料钎焊c-BN的焊接性
  • 2.4.1 钎料状态及成分
  • 2.4.2 真空度
  • 2.4.3 钎焊温度
  • 2.4.4 保温时间
  • 2.5 CU基钎料钎焊c-BN的焊接性
  • 2.5.1 基础钎料成分的焊接性
  • 2.5.2 cu铜基活性钎料成分的优化
  • 2.6 本章小结
  • 第3章 活性钎料与c-BN的微观结构及其界面反应机制
  • 3.1 AG基活性钎料的润湿性及其c-BN的微观结构
  • 3.2 AG-CU-TI钎料与c-BN界面反应形成机制
  • 3.3 CU基活性钎料的润湿机制及其与c-BN的界面微观结构
  • 3.4 CU基活性钎料制备c-BN仿生耐磨复合材料的性能
  • 3.5 c-BN仿生耐磨复合材料结合强度与耐磨性的力学模型
  • 3.6 本章小结
  • 第4章 放电等离子烧结技术制备c-BN仿生耐磨复合材料
  • 4.1 SPS技术制备c-BN仿生耐磨复合材料工艺
  • 4.2 SPS技术制备c-BN仿生耐磨复合材料的性能试验
  • 4.2.1 密度及致密度测试
  • 4.2.2 耐磨性试验
  • 4.2.3 组织分析
  • 4.3 c-BN仿生耐磨复合材料的微观结构
  • 4.4 c-BN仿生耐磨复合材料的致密度
  • 4.5 c-BN仿生耐磨复合材料的耐磨性能
  • 4.5.1 削盘式磨料磨损试验
  • 4.5.2 摩擦磨损试验
  • 4.6 c-BN仿生耐磨复合材料的摩擦磨损机理
  • 4.7 本章小结
  • 第5章 工艺参数对c-BN仿生耐磨复合材料性能的影响
  • 5.1 正交多项式回归设计方案
  • 5.2 回归方程的建立
  • 5.2.1 致密度的回归方程
  • 5.2.2 耐磨性的回归方程
  • 5.3 试验因素分析
  • 5.4 工艺参数优化
  • 5.5 c-BN仿生耐磨复合材料/钢微观结构
  • 5.6 本章小结
  • 第6章 结论
  • 参考文献
  • 作者简介及在学期间所取得的科研成果
  • 致谢
  • 相关论文文献

    • [1].微量硅元素对铜磷锡粉状钎料性能的影响[J]. 焊接 2019(10)
    • [2].BNi73CrSiB-40Ni-S粉状及片状钎料工艺性能研究[J]. 汽轮机技术 2018(02)
    • [3].银元素对含银钎料性能的影响[J]. 中国有色金属学报 2016(11)
    • [4].焊接专利[J]. 焊接 2013(12)
    • [5].轧制工艺对银钎料流铺性的影响[J]. 材料科学与工艺 2015(01)
    • [6].复合钎料的研究进展[J]. 河北科技大学学报 2015(04)
    • [7].锂霞石复合玻璃钎料连接碳化硅陶瓷接头的应力缓释机理[J]. 硅酸盐学报 2020(03)
    • [8].基于熵模型镀锡银钎料钎焊性能的定量表征[J]. 焊接学报 2020(01)
    • [9].基于邦迪管低银钎料的研究[J]. 家电科技 2017(08)
    • [10].电迁移对石墨颗粒增强复合钎料接头组织的影响[J]. 热加工工艺 2016(07)
    • [11].AgCuSn-Ag-AgCuSn复合钎料的组织及性能[J]. 焊接 2016(03)
    • [12].采用复合钎料的铝合金中温真空钎焊技术[J]. 焊接 2009(04)
    • [13].含镓和铟的无镉银基中温钎料性能研究[J]. 焊接 2011(09)
    • [14].电真空钎料的应用与发展[J]. 山东工业技术 2013(13)
    • [15].硫对银钎料及钎焊性能的影响[J]. 焊接学报 2013(01)
    • [16].非晶钎料钎焊接头形成过程研究(英文)[J]. 稀有金属材料与工程 2013(04)
    • [17].钎料系选择对低压电器电触头性能的影响[J]. 低压电器 2011(06)
    • [18].低蒸气压中温钎料研究进展[J]. 铸造技术 2011(10)
    • [19].银基粉末钎料粘接挥发性能的工艺试验和研究[J]. 舰船防化 2011(06)
    • [20].新型锌基复合钎料的制备及性能[J]. 焊接技术 2010(01)
    • [21].金首饰用无镉K金钎料的研究与发展[J]. 贵金属 2010(01)
    • [22].合金元素对6063铝合金阶梯焊中温钎料性能的影响[J]. 焊接学报 2009(08)
    • [23].6063铝合金阶梯焊中温钎料腐蚀性能[J]. 焊接学报 2009(10)
    • [24].低熔点铝基复合钎料的制备及其性能研究[J]. 电焊机 2009(11)
    • [25].提高力学性能的无铅复合钎料[J]. 现代制造 2009(03)
    • [26].中温无镉钎料的研究进展[J]. 焊接技术 2008(06)
    • [27].BNi52MnCoNbSiFeB合金钎料粉末的制备与性能研究[J]. 广东化工 2020(18)
    • [28].高温钎料焊膏研究进展[J]. 贵金属 2020(S1)
    • [29].铜磷基非晶钎料的钎焊性能研究[J]. 热加工工艺 2016(21)
    • [30].Ni-Mn-Si-Cu-B-Ce钎料钎焊性能的研究[J]. 热加工工艺 2016(13)

    标签:;  ;  ;  ;  ;  ;  

    立方氮化硼仿生耐磨复合材料的制备及其研究
    下载Doc文档

    猜你喜欢