量子绝热计算

量子绝热计算

论文摘要

本文在GNU/Linux 平台上基于Libquantum C 编译的环境实现了比QSS(Quantum System Simulator)精度高的量子绝热SAT(satisfiability problem)算法。通过选择Ising 模型的一个简化的Hamiltonian 量,在量子绝热SAT 算法中的精度得到进一步的加强。第二章,介绍了量子力学的有关知识。第三章,介绍了量子计算中的有关知识。首先介绍了量子计算机中的基本信息表示(量子位和测量),然后介绍了用于完成量子计算的量子门,最后介绍了量子并行性。第四章,介绍量子绝热计算与模拟实验结果。首先介绍量子绝热定理,然后介绍量子绝热SAT 演化构造思想和构造元素问题Hamiltonian量和初始Hamiltonian 量,它们的线性组合构成演化Hamiltonian 量。最后给出我们的问题Hamiltonian 量的定义及简化Hamiltonian 量的选取,通过QSS 论文中的三个例子给出QSS、量子绝热SAT 算法和选择Ising模型的一个简化的Hamiltonian 量。给出了量子绝热SAT 算法的模拟实验结果。实验结果表明,在求解精度方面,量子绝热SAT 算法对规模较小的问题,和QSS 相比,精度有明显的提高。随问题的规模的增大,精度有所增加,但提高的幅度有所减小。而选择Ising 模型的一个简化的Hamiltonian 量的量子绝热SAT 算法和原算法相比,精度有明显的提高。由于SAT 问题是理论计算机科学中的一个重要问题,因此该问题和算法对研究人工智能系统及计算理论有着十分重要的作用。

论文目录

  • 第一章 序言
  • 第二章 量子力学基础
  • 2.1 光子的偏振
  • 2.1.1 偏振实验
  • 2.1.2 实验解释
  • 2.2 状态空间和狄拉克表示法
  • 2.2.1 状态空间
  • 2.2.2 狄拉克表示法
  • 2.3 线性算子
  • 2.4 Schr(?)dinger 方程
  • 第三章 量子计算
  • 3.1 量子计算机中基本信息表示
  • 3.1.1 量子位
  • 3.1.2 多量子位
  • 3.1.3 测量
  • 3.2 量子门
  • 3.2.1 单个量子位门
  • 3.2.2 两个量子位门
  • 3.2.3 三个量子位门
  • 3.2.4 量子态的不可克隆原理
  • 3.3 量子门阵列
  • 3.4 量子并行性
  • 第四章 量子绝热计算
  • 4.1 量子绝热定理
  • 4.2 SAT 问题
  • 4.3 Hamiltonian 量
  • P'>4.3.1 问题 Hamiltonian 量HP
  • B'>4.3.2 初始 Hamiltonian 量HB
  • 4.4 绝热演化
  • 4.5 量子SAT 绝热算法
  • 4.6 算法实现及例子
  • 4.6.1 问题的定义和初始Hamiltonian 量的选择
  • 4.6.2 例子及模拟结果
  • 4.6.3 讨论
  • 参考文献
  • 中文摘要
  • 英文摘要
  • 致谢
  • 导师及作者简介
  • 相关论文文献

    • [1].Multiplicity of Periodic Solutions for Second Order Hamiltonian Systems with Asymptotically Quadratic Conditions[J]. Acta Mathematica Sinica 2020(01)
    • [2].Brake Orbits of First Order Convex Hamiltonian Systems with Particular Anisotropic Growth[J]. Acta Mathematica Sinica 2020(02)
    • [3].Energy Variance in Decoherence[J]. Chinese Physics Letters 2020(03)
    • [4].Multiple brake orbits of even Hamiltonian systems on torus[J]. Science China(Mathematics) 2020(07)
    • [5].A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions[J]. Communications in Theoretical Physics 2019(07)
    • [6].Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register[J]. Chinese Physics Letters 2019(10)
    • [7].Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method[J]. IEEE/CAA Journal of Automatica Sinica 2018(04)
    • [8].Experimental quantum Hamiltonian identification from measurement time traces[J]. Science Bulletin 2017(12)
    • [9].An efficient broadband coupled-mode model using the Hamiltonian method for modal solutions[J]. Science China(Physics,Mechanics & Astronomy) 2017(09)
    • [10].On the Number of Limit Cycles in Small Perturbations of a Piecewise Linear Hamiltonian System with a Heteroclinic Loop[J]. Chinese Annals of Mathematics(Series B) 2016(02)
    • [11].An Alternative Adiabatic Quantum Algorithm for the Hamiltonian Cycle Problem[J]. Communications in Theoretical Physics 2015(05)
    • [12].The Study of Minimal Period Estimates for Brake Orbits of Autonomous Subquadratic Hamiltonian Systems[J]. Acta Mathematica Sinica 2015(10)
    • [13].A Direct Method of Hamiltonian Structure[J]. Communications in Theoretical Physics 2011(07)
    • [14].Blow-up criteria and periodic peakons for a two-component extension of the μ-version modified Camassa-Holm equation[J]. Communications in Theoretical Physics 2020(03)
    • [15].直径为2图中的长圈[J]. 数学的实践与认识 2020(10)
    • [16].一类超二次二阶Hamiltonian系统同宿解的一个注记(英文)[J]. 仲恺农业工程学院学报 2017(04)
    • [17].Symplectic Self-adjointness of Infinite Dimensional Hamiltonian Operators[J]. Acta Mathematica Sinica 2018(09)
    • [18].一类四次Hamiltonian函数周期环域的环性[J]. 数学进展 2017(02)
    • [19].Existence of Periodic Solutions of Sublinear Hamiltonian Systems[J]. Acta Mathematica Sinica 2016(05)
    • [20].Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems[J]. Acta Mathematicae Applicatae Sinica 2016(01)
    • [21].Spectral Inclusion Properties of Unbounded Hamiltonian Operators[J]. Chinese Annals of Mathematics(Series B) 2015(02)
    • [22].Homoclinic Orbits for First Order Hamiltonian Systems with Some Twist Conditions[J]. Acta Mathematica Sinica 2015(11)
    • [23].On Invertible Nonnegative Hamiltonian Operator Matrices[J]. Acta Mathematica Sinica(English Series) 2014(10)
    • [24].Energy-shaping for Hamiltonian control systems with time delay[J]. Journal of Control Theory and Applications 2013(03)
    • [25].Stability for a class of nonlinear time-delay systems via Hamiltonian functional method[J]. Science China(Information Sciences) 2012(05)
    • [26].Existence of Homoclinic Solution for a Class of Hamiltonian Systems[J]. 数学研究及应用 2012(01)
    • [27].A Family of Adaptive H_∞ Controllers with Full Information for Dissipative Hamiltonian Systems[J]. International Journal of Automation & Computing 2011(02)
    • [28].Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms[J]. Science China(Mathematics) 2011(12)
    • [29].二阶离散Hamiltonian系统的周期解[J]. 山西大学学报(自然科学版) 2010(01)
    • [30].On Feasibility of Variable Separation Method Based on Hamiltonian System for a Class of Plate Bending Equations[J]. Communications in Theoretical Physics 2010(03)

    标签:;  ;  ;  

    量子绝热计算
    下载Doc文档

    猜你喜欢