余娜:基于低频段薄膜型声学超材料降噪特性的压电换能机构设计制造研究论文

余娜:基于低频段薄膜型声学超材料降噪特性的压电换能机构设计制造研究论文

本文主要研究内容

作者余娜(2019)在《基于低频段薄膜型声学超材料降噪特性的压电换能机构设计制造研究》一文中研究指出:声学超材料是一种由不同弹性模量和质量密度构成的周期性人工复合材料,它具有自然界材料所不具备的特性。随着理论研究的不断深入,声学超材料逐步走向实际应用。本文分析了在低频段频率范围内薄膜型声学超材料的降噪特性,并设计了一种新型压电换能机构。该新型压电换能机构能够实现将噪声能量转换为电能,使得可再生能源的应用前景大为广阔,在减少环境污染的同时真正实现能源替代。研究了薄膜型声学超材料的材料参数和结构参数对降噪性能的影响规律。基于噪声的隔离和吸收现有理论,利用COMSOL Multiphysics在设置不同参数的情况下仿真得出超材料降噪性能的影响因素,讨论了薄膜型声学超材料参数改变在低频吸声隔声中的优势。结果显示:提高超材料的吸声系数,可局部降低空心质量块质量;预应力的改变对吸声系数影响微弱;减小薄膜与声波接触的中心面积可提高对更低频率处声波的吸收,降低吸声系数的最大值;薄膜厚度增加最大吸声系数值随之降低,与吸声曲线峰值所对应的吸声频率点也随之向高频处移动;增加超材料单元数量或薄膜层数均可提高平均吸声系数和平均隔声量。基于仿真结果和实际实验条件,最终设计了一种由支撑框架、弹性薄膜和空心质量块构成的薄膜型声学超材料结构。加工制作了薄膜型声学超材料测试样品1、2,使用驻波管对其吸声隔声性能做测试实验并同仿真结果对比。结果发现,样品1在频率为420Hz处时隔声量最小。实验测得样品1、2的隔声量及吸声系数曲线与仿真结果趋势近似,理论与实际基本吻合。驻波管实验论证了薄膜型声学超材料在低频降噪方面较普通隔声结构的优越性。设计制造了新型压电换能机构,初步实现了薄膜型声学超材料对噪声能量的收集和转化。薄膜型声学超材料将频率范围在0-1000Hz的白噪声声波能量吸收,尤其是在薄膜与空心质量块达到共振的情况下通过新型压电换能机构把噪声能量转化为电能,实验结果显示有0.1mA的电流被成功转换。实验数据验证了新型压电换能机构的可操作性,基本实现了对可再生能源的有效利用。

Abstract

sheng xue chao cai liao shi yi chong you bu tong dan xing mo liang he zhi liang mi du gou cheng de zhou ji xing ren gong fu ge cai liao ,ta ju you zi ran jie cai liao suo bu ju bei de te xing 。sui zhao li lun yan jiu de bu duan shen ru ,sheng xue chao cai liao zhu bu zou xiang shi ji ying yong 。ben wen fen xi le zai di pin duan pin lv fan wei nei bao mo xing sheng xue chao cai liao de jiang zao te xing ,bing she ji le yi chong xin xing ya dian huan neng ji gou 。gai xin xing ya dian huan neng ji gou neng gou shi xian jiang zao sheng neng liang zhuai huan wei dian neng ,shi de ke zai sheng neng yuan de ying yong qian jing da wei an kuo ,zai jian shao huan jing wu ran de tong shi zhen zheng shi xian neng yuan ti dai 。yan jiu le bao mo xing sheng xue chao cai liao de cai liao can shu he jie gou can shu dui jiang zao xing neng de ying xiang gui lv 。ji yu zao sheng de ge li he xi shou xian you li lun ,li yong COMSOL Multiphysicszai she zhi bu tong can shu de qing kuang xia fang zhen de chu chao cai liao jiang zao xing neng de ying xiang yin su ,tao lun le bao mo xing sheng xue chao cai liao can shu gai bian zai di pin xi sheng ge sheng zhong de you shi 。jie guo xian shi :di gao chao cai liao de xi sheng ji shu ,ke ju bu jiang di kong xin zhi liang kuai zhi liang ;yu ying li de gai bian dui xi sheng ji shu ying xiang wei ruo ;jian xiao bao mo yu sheng bo jie chu de zhong xin mian ji ke di gao dui geng di pin lv chu sheng bo de xi shou ,jiang di xi sheng ji shu de zui da zhi ;bao mo hou du zeng jia zui da xi sheng ji shu zhi sui zhi jiang di ,yu xi sheng qu xian feng zhi suo dui ying de xi sheng pin lv dian ye sui zhi xiang gao pin chu yi dong ;zeng jia chao cai liao chan yuan shu liang huo bao mo ceng shu jun ke di gao ping jun xi sheng ji shu he ping jun ge sheng liang 。ji yu fang zhen jie guo he shi ji shi yan tiao jian ,zui zhong she ji le yi chong you zhi cheng kuang jia 、dan xing bao mo he kong xin zhi liang kuai gou cheng de bao mo xing sheng xue chao cai liao jie gou 。jia gong zhi zuo le bao mo xing sheng xue chao cai liao ce shi yang pin 1、2,shi yong zhu bo guan dui ji xi sheng ge sheng xing neng zuo ce shi shi yan bing tong fang zhen jie guo dui bi 。jie guo fa xian ,yang pin 1zai pin lv wei 420Hzchu shi ge sheng liang zui xiao 。shi yan ce de yang pin 1、2de ge sheng liang ji xi sheng ji shu qu xian yu fang zhen jie guo qu shi jin shi ,li lun yu shi ji ji ben wen ge 。zhu bo guan shi yan lun zheng le bao mo xing sheng xue chao cai liao zai di pin jiang zao fang mian jiao pu tong ge sheng jie gou de you yue xing 。she ji zhi zao le xin xing ya dian huan neng ji gou ,chu bu shi xian le bao mo xing sheng xue chao cai liao dui zao sheng neng liang de shou ji he zhuai hua 。bao mo xing sheng xue chao cai liao jiang pin lv fan wei zai 0-1000Hzde bai zao sheng sheng bo neng liang xi shou ,you ji shi zai bao mo yu kong xin zhi liang kuai da dao gong zhen de qing kuang xia tong guo xin xing ya dian huan neng ji gou ba zao sheng neng liang zhuai hua wei dian neng ,shi yan jie guo xian shi you 0.1mAde dian liu bei cheng gong zhuai huan 。shi yan shu ju yan zheng le xin xing ya dian huan neng ji gou de ke cao zuo xing ,ji ben shi xian le dui ke zai sheng neng yuan de you xiao li yong 。

论文参考文献

  • [1].薄膜型声学超材料设计及其隔声性能研究[D]. 姬艳露.中北大学2019
  • [2].薄膜声学超材料微结构特征对其隔声性能影响的研究[D]. 叶超.福建农林大学2017
  • [3].各向异性材料为基元的多层膜超材料光学性质研究[D]. 卢元申.南京大学2017
  • [4].基于超材料相移特性的太赫兹波定向反射器研究[D]. 刘华洋.电子科技大学2019
  • [5].基于超材料的极化转换器及其电磁特性研究[D]. 赵海鹏.桂林电子科技大学2019
  • [6].无线电力传输中磁性超材料的设计与应用研究[D]. 华立群.上海交通大学2017
  • [7].基于磁流变薄膜的磁固耦合主动声学超材料及其低频隔声性能研究[D]. 闻轶凡.江苏大学2018
  • [8].负泊松比超材料的减振性能研究[D]. 吕亦乐.电子科技大学2019
  • [9].电磁超材料及其在天线上的应用研究[D]. 封旭旭.电子科技大学2019
  • [10].吸波超材料二面角电磁特性研究[D]. 李天骥.华中师范大学2019
  • 读者推荐
  • [1].基于磁流变薄膜的磁固耦合主动声学超材料及其低频隔声性能研究[D]. 闻轶凡.江苏大学2018
  • [2].薄膜型声学超材料设计及其隔声性能研究[D]. 姬艳露.中北大学2019
  • [3].声学超材料隔声性能研究[D]. 刘忠远.青岛理工大学2019
  • [4].基于声学超材料的声吸收和声隔离的研究[D]. 林远鹏.南京大学2019
  • [5].基于磁场控制的可调谐薄膜声学超材料及其低频隔声性能[D]. 杭锐.江苏大学2019
  • [6].三维声学超材料的结构设计与实验研究[D]. 李玉良.哈尔滨工业大学2018
  • [7].汽车减振声学超材料的高效高精度计算方法研究[D]. 许煊煚.湖南大学2018
  • [8].基于声学超表面的复合型声阵列研究[D]. 李晓言.南京大学2018
  • [9].基于声学超材料的声屏障与隔声管道的研究[D]. 张海龙.南京大学2018
  • [10].基于超材料的声波主动控制技术研究[D]. 周强.哈尔滨工业大学2016
  • 论文详细介绍

    论文作者分别是来自长安大学的余娜,发表于刊物长安大学2019-11-04论文,是一篇关于薄膜型声学超材料论文,低频降噪论文,有限元仿真论文,实验测试论文,压电换能论文,长安大学2019-11-04论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自长安大学2019-11-04论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    余娜:基于低频段薄膜型声学超材料降噪特性的压电换能机构设计制造研究论文
    下载Doc文档

    猜你喜欢