论文摘要
杂化材料处于多学科的交叉点,是近年来国内外研究的前沿和热点。由于其整合了有机和无机材料的优势特点,可在更广泛的范围内调控材料的性能,达到多功能的目的。杂化材料已成为继单组分材料、复合材料和梯度材料之后的第四代材料。杂化材料最初是通过溶胶.凝胶法制备的,经过几十年的发展,新的制备方法不断出现和完善。目前主要可以分为六类:溶胶.凝胶法、共混法、插层法、自组装法、电解聚合法和原位聚合法等,采用镀膜技术中常用的磁控溅射的方法来制备有机-无机杂化材料还未见报道。该法具有制备步骤简单、速度快、无须水和任何溶剂,环保无污染,制得的杂化材料纯度高等优点。我们还可以通过控制条件将粒子的产生和分散两个过程一并进行,避免了以往困扰制备纳米材料的粒子易聚结成大颗粒的问题。前期的研究中发现,该法制备的氟碳膜有泛黄现象,说明分子中含有一定量的共轭双键,共轭双键中的电子跃迁-吸收可产生明显的紫外吸收作用,再加上纳米氧化锌所具有的强紫外屏蔽作用,由这两种物质结合而成的杂化材料会产生较强的紫外吸收作用。氟碳膜具有优异的疏水性,和ZnO膜形成杂化材料以后,疏水性能是否发生变化也是本文研究的内容。这些研究为以后制备出既具有较强抗紫外性能又具有良好疏水性的新型功能材料提供了一种新方法。本文采用射频磁控溅射的方法,首先以聚四氟乙烯(PTFE)为靶材,以Ar为载气,在聚对苯二甲酸乙二醇酯(PET)基底上沉积氟碳高分子有机膜;然后再以金属Zn为靶材,以氩气为载气,以氧气为反应气体,且体积比O2:Ar:3:1,利用二次反应溅射,Zn与O2反应生成ZnO无机小分子膜沉积在氟碳高分子膜上,从而得到FC/ZnO的有机-无机杂化材料。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X-射线光电子能谱(XPS)、傅立叶变换红外光谱仪(FT-IR)、紫外分光光度计以及接触角测定仪对所制备的氟碳膜以及FC/ZnO杂化膜进行了测试和表征,找出其形貌、结构以及性能随溅射条件的不同而变化的规律。利用SEM和AFM观察了氟碳膜、FC/ZnO杂化膜的表面形貌和生长情况,初步探讨了FC/ZnO杂化膜的成膜机理以及表面形貌与溅射工艺条件的关系。结果表明:由双高分子体系(基底-溅射靶)制备得到的氟碳膜是一种基本由纳米粒子/纳米孔隙组成的双纳米结构高分子沉积膜。随着溅射压力和放电功率的增加,沉积在PET基底上的氟碳粒子逐渐变小、变密,形状从不规则变成较为规则的近圆形,粒子间的孔隙逐渐变小,覆盖度增加。在氟碳膜上再沉积一层ZnO膜而形成FC/ZnO杂化材料后,其形貌发生了一些变化:如果ZnO的沉积时间短(2min以内),ZnO粒子的沉积量少,杂化膜可以继续延续原氟碳膜的表面形貌,只是ZnO粒子的直径较大,所形成的花纹线条较粗,但仍能保持在100nm左右;当ZnO的沉积时间在5min以上时,由于ZnO的沉积量较多,完全覆盖了原氟碳膜的形貌。杂化膜的生长模式较为特殊,是一种依附于有机核的沉积-扩散生长模式。在FC/ZnO杂化膜的生长过程中,ZnO粒子优先沉积到氟碳膜高耸的部位,先以顶部的氟碳大分子为核生长,然后再向四周扩散,沉积到氟碳膜的其它部位。AFM的测试结果表明:沉积膜是一种垂直于基底表面的圆锥形岛状结构,每个岛又由许多纳米粒子组成,是一种较为复杂的团簇状二次结构。随着ZnO沉积时间的增加,岛的高度增加,岛的表面先变的比较尖耸,而后逐渐变得平整了,在这20分钟时间内,杂化膜的生长速率基本上是恒定的,大约为5nm/min。用X-射线光电子能谱(XPS)研究了氟碳膜以及FC/ZnO杂化膜表面结构随功率和压力的变化规律,发现该法制备的沉积膜F/C较低,严重偏离靶材PTFE的化学计量比,说明膜中氟不足而产生不饱和双键和支化结构,在空气中不饱和双键容易被氧化而使氟碳膜表面泛黄。所以氟碳膜可能对紫外光产生一定的吸收作用。对于氟碳高分子有机膜,随着压力的增加,F/C增加,功率增加,F/C减小。氟碳膜表面溅射沉积氧化锌粒子形成较薄覆盖层杂化膜后,由于两层膜的原子和基团间的相互作用,其表面结构发生很大变化。功率和压力对杂化膜F/C的影响与氟碳高分子膜正好相反:随着溅射功率的增加,杂化膜的F/C逐渐增大,而工作压力增加,杂化膜的F/C呈减小的趋势。随着ZnO沉积时间的增加,杂化膜的F/C呈现逐渐增加的趋势。该法制备的杂化膜中ZnO的组成良好。尝试用刮削法得到PET基底上的沉积膜粉末,用KBr压片法得到沉积膜的红外谱图,验证了部分XPS的分析结果。紫外分光光度计的测试结果表明:氟碳膜的吸收峰只有一个,最大吸收在310-320nm之间,紫外最大吸光度随着溅射功率和溅射压力的增加呈现逐渐增大的趋势。这主要是由于功率和压力的增大使得沉积的氟碳粒子变小、变圆、数量增多,这些粒子对紫外光的散射作用增强所致。形成杂化材料以后,在与沉积氟碳膜相同的功率和压力下杂化膜的紫外吸收有了很大提高,且吸收带的尾部拖入了可见光区(>400nm),在可见光区也有一定的吸收。这是由于ZnO纳米粒子吸收为主,ZnO及氟碳高分子纳米粒子及纳米孔洞散射反射为辅,以及相互影响的结果。当ZnO沉积时间短(2min以内),FC/ZnO杂化膜的紫外最大吸光度与氟碳膜紫外吸收相比变化不大;若增加ZnO的沉积时间到5min以上时,杂化膜的紫外最大吸光度出现较大幅度的提高。随着ZnO沉积时间的延长,杂化膜的紫外最大吸光度逐渐增大。FC/ZnO杂化膜是一种具有多重紫外线吸收-散射的功能膜,其紫外吸收性能明显优于氟碳膜也优于纯ZnO膜。静态接触角的测试表明:沉积膜的接触角都大于90°,是一种疏水性能较好的膜。对于氟碳膜,随着功率的增加,接触角逐渐减小,表面张力增大;而压力增加,接触角逐渐增大,表面张力减小;形成FC/ZnO杂化膜以后,功率、压力对其接触角和表面张力的影响正好与氟碳膜相反。由AFM的观察发现:磁控溅射法所制备的氟碳膜洗涤60分钟后膜厚度下降了50nm,而FC/ZnO杂化膜由于沉积了耐磨性较好的ZnO无机膜,洗涤后厚度基本上没有变化。不同功率、压力下的样品经洗涤后接触角均有不同程度的下降,XPS的分析从微观角度分子层面上解释了沉积膜接触角下降的原因主要是由于洗涤后沉积膜中氟含量的下降所致;另外,膜厚的减小、膜表面变得平滑以及洗涤剂的作用也可以使沉积膜的接触角下降。