H-矩阵和块矩阵的若干性质

H-矩阵和块矩阵的若干性质

论文摘要

H-矩阵和块矩阵在矩阵理论和实际应用中具有重要的作用和意义。它在计算数学、矩阵论、数值代数、数学物理、控制论、电力系统理论、经济数学、统计学等众多领域中有着广泛的应用。国内外许多学者应用矩阵理论上的一些方法、不等式放缩技巧及迭代算法,获得了H-矩阵的许多判定方法,并对其性质与应用进行了研究。其中,广义H-矩阵的理论在许多实际问题的研究中有着更重要的作用。本文进一步研究了H-矩阵的判别条件及性质,给出了非奇异H-矩阵的一些新判定,块对角占优矩阵的Khatri-Rao积的性质,广义H-矩阵、广义M-矩阵等矩阵的Hadmard积及其在块迭代法中的应用等。第一章介绍了H-矩阵的应用背景、研究现状及理论与实际应用,尤其介绍了H-矩阵和块对角占优矩阵的应用背景及当前已经取得的一些成果。第二章将下标集N划分N1(?)N2(?) N3,结合有关矩阵对角占优块元素的性质,我们利用恒等行集N1、N2上的部分元素,选取不大于1的系数因子di、δi,并将该因子分别相乘于列标位于恒等行集N1、N2上的部分元素,进而构造出正对角阵D,利用不等式的放缩技巧,得到了非奇异H-矩阵一些新的判别方法,同时也给出了具有非零元素链矩阵相应的结论,有效地改进了一些已有结果,并由数值例子来说明其有效性。第三章研究在矩阵范数下的块对角占优矩阵的Khatri-Rao积,在计算数学与统计学中有着重要的作用。得出了在某些矩阵范数下的几类块对角占优矩阵的Khatri-Rao积仍保持其原有的块对角占优性质,推广了近期的一些结论。第四章广义H-矩阵的理论在许多实际问题的研究中有着非常重要的作用,如偏微分方程数值求解中出现的线性方程组的迭代法的收敛性问题。本章讨论了广义M-矩阵的Hadmard积还是广义M-矩阵,广义H-矩阵的Hadmard积还是广义H-矩阵,我们也改进了线性方程组的广义迭代方法及其应用。

论文目录

  • 摘要
  • Abstract
  • 第一章 引言
  • §1.1 几类特殊矩阵的简介及用途
  • §1.2 本文研究的内容及结构
  • §1.3 有关本文的一些记号及定义
  • 第二章 非奇异H-矩阵的一些新判定
  • §2.1 引言
  • §2.2 非奇异H-矩阵的一些新判定
  • §2.3 数值例子
  • 第三章 块对角占优矩阵的Khatri-Rao积的性质
  • §3.1 引言
  • §3.2 矩阵的Kronecker积的范数
  • §3.3 几类块对角占优矩阵的Khatri-Rao积
  • 第四章 几类特殊矩阵的Hadmard积
  • §4.1 引言
  • §4.2 广义H-矩阵与广义M-矩阵的Hadmard积的一些性质及判定定理
  • §4.3 几类特殊矩阵的Hadmard积在块迭代法中的应用
  • 结论和展望
  • 参考文献
  • 致谢
  • 攻读硕士学位期间公开发表和完成的论文
  • 相关论文文献

    • [1].基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报 2020(01)
    • [2].广义轮换测量矩阵及其在水下回波信号压缩感知中的应用[J]. 声学技术 2019(06)
    • [3].低阶几乎惯量任意的可约零-非零模式矩阵[J]. 内蒙古师范大学学报(自然科学汉文版) 2020(02)
    • [4].媒体“出圈”[J]. 传媒评论 2020(08)
    • [5].政务新媒体矩阵发展策略——以“安徽发布”两微一网为例[J]. 新闻世界 2019(02)
    • [6].与矩阵A可交换的全体矩阵的性质[J]. 河北北方学院学报(自然科学版) 2019(07)
    • [7].高校新媒体矩阵建设策略研究[J]. 武汉商学院学报 2018(02)
    • [8].正则(0,1)矩阵的行并存数[J]. 江西理工大学学报 2017(01)
    • [9].基于犹豫语言判断矩阵的数据产品选择研究[J]. 计算机工程与应用 2017(15)
    • [10].矩阵打洞方法在矩阵秩问题中的应用[J]. 喀什大学学报 2017(03)
    • [11].几类典型矩阵方程的梯度矩阵的计算[J]. 高等数学研究 2017(04)
    • [12].单位矩阵在矩阵运算中的应用技巧[J]. 吉林工程技术师范学院学报 2017(07)
    • [13].一种基于复合混沌映射的压缩感知测量矩阵构造方法研究[J]. 电子学报 2017(09)
    • [14].矩阵填充理论概述[J]. 科技展望 2015(27)
    • [15].4年级数学应用题Q矩阵的适宜性[J]. 江西师范大学学报(自然科学版) 2016(04)
    • [16].风车模型在正规拉普拉斯矩阵下谱特性研究[J]. 信息系统工程 2016(09)
    • [17].伴随矩阵与m次伴随矩阵的对应性质[J]. 宜春学院学报 2014(12)
    • [18].矩阵表达常见错误解析[J]. 编辑学报 2015(03)
    • [19].人民日報全媒矩阵融合传播[J]. 平安校园 2020(02)
    • [20].行最简形矩阵的研讨与启发式教学浅析[J]. 课程教育研究 2020(07)
    • [21].《矩阵与变换》教学的几点启示[J]. 数学教学通讯 2020(03)
    • [22].矩阵教学的困惑与收获[J]. 中学数学月刊 2013(12)
    • [23].矩阵与变换常见解题误区分析[J]. 高中数理化 2015(05)
    • [24].漂浮矩阵[J]. 缤纷 2013(09)
    • [25].“矩阵与变换”题型全搜索[J]. 新高考(高二版) 2009(Z1)
    • [26].如何突破大客户销售中的人际矩阵[J]. 销售与市场(渠道版) 2011(04)
    • [27].“矩阵与变换”题型全搜索[J]. 新高考(语文数学英语) 2008(12)
    • [28].3类典型的“矩阵和”的行列式计算及其应用[J]. 江西科学 2020(05)
    • [29].矩阵可逆的判别和逆阵的求法[J]. 课程教育研究 2016(13)
    • [30].符号矩阵填充的修正增广拉格朗日乘子算法[J]. 太原师范学院学报(自然科学版) 2019(04)

    标签:;  ;  ;  ;  ;  

    H-矩阵和块矩阵的若干性质
    下载Doc文档

    猜你喜欢