中国海诚工程科技股份有限公司200031
摘要:弱电控制由于其自身的控制性能较好,在控制技术的实施中具有很多的优势,因此弱电控制被广泛应用到电控系统中。采用自动控制系统实施,能够将弱电控制系统控制的性能体现出来,实现了整个系统控制的科学性提升。本文针对自动化控制中弱电控制强电的方法分析,其意义在于按照自动化系统控制中弱电与强电控制的定义,将整个控制中的环节明确,为控制方法的应用实施奠定基础,提升控制方法应用的科学性。
关键词:自动化控制;弱电控制强电;方法应用
一、自动化控制的几个关键问题
现阶段,我国自动化控制的发展中,对弱电控制强电还有着一定的依赖性,不夸张的说,弱电控制强电是我国的自动化控制系统发展中的关键技术,不能缺少,它是社会生产、人民生活能够方便、顺利进行的关键,同时也关系着电路的安全,环境接触者的安全。文章介绍自动化控制的四个关键问题,具体如下分析:
1.1电气自动化控制的开放式发展平台
在自动化控制系统中,通过OPC平台和Windows技术实现弱电控制强电,其中,OPC平台的应用需要结合电气控制技术才可以达到效果。
1.2电气自动化控制的IEC61131接口标准化
根据相关统计,世界上的PLC生产企业已经达到上百家,PLC的产品种类已经超过400种,各式各样,然而,由于各个PLC产品的编程具有很大的差异,所以它们之间的相互结合具有一定的困难,这种困难随着IEC61131的颁布得到了很好的解决。其中最主要的就是,在IEC61131中对编程的语法和语义做出了很明确的解释,促进了编程接口的标准化。从目前来看,大部分的生产商对IEC61131都予以认可的态度,已经形成以一种国际化的标准,成为PLC的生产标准依据,在很大程度上简化了生产工序,减少了编程所需要的时间,大大提高了生产效率,对于PLC的使用效果也有了很大的改善。
1.3电气自动化控制的Windows标准平台
在自动化控制领域,微软技术为其提供了运行平台的同时为其制定了一定的标准,在信息时代,各行各业的发展都离不开PC与网络技术,其应用范围广泛,最常见的比如人机交互界面的普及等等。Windows系统操作简单,与办公平台的集成相对也比较容易,非常利于自动化系统中弱电控制强电的运行。
1.4电气自动化控制的现场总线以及控制系统
现场总线,就是连接设备与自动化系统双向传输分支结构的串行总线,简单地说,就是通过串行电缆,将计算机和PLC的CPU与远程I/O站、智能仪表、低压断路器等设备进行连接,然后进行设备信息的采集,最后将这些信息传输至控制器上,完成系统控制操作。
二、弱电控制强电的具体实现
从现状来看,弱电控制强电已经逐渐适用于各个领域。弱电控制强电的本质就在于构建单片机系统,通过这种方式来保障控制效果。在技术组合的前提下,弱电就可以用于控制强电,这种措施适合日常生活以及生产所需的控制系统,因此体现了显著的便捷性以及安全性。具体而言,弱电控制强电包含了如下实现方式。
2.1基本的控制原理
一般来讲,单片机应当构成弱电控制强电的主要系统,这种系统构成了主导。经过技术组合后,弱电就可以控制强电。在系统的内部,单片机的基本性能在于判断传感器测温,单片机装置内部通常包含了复位电路与时钟电路。具体在测温时,可以通过专业手段来实施测量,单片机可以反馈实时性的测温数据。系统内部设有PTC电路,对此可以控制与调节温度。二者密切结合,单片机可以负责控制实时性的测温信息,确保符合一致性的测温结论。例如:对于容器内部温度,就可以运用传感器来测定液体温度,确保获得适当的温度。
2.2系统内部的电路
首先是电源。对于自动化的弱电控制强电而言,电源应当包含变压器、整流桥、电容与稳压管。在正常运行时,电源可以用于提供更稳定的电压,进而确保直流电与交流电之间的顺利转化;同时,单片机也可以获得稳定电压。例如对于电压转换而言,12~220V之间可以实现互相转换。在转换电压时,应当运用整流桥的方式来具体执行。经过稳压管与电容滤波的作用,直流电压就可以被降低,在此基础上获得更稳定的低压。
其次是单片机。单片机内部设有温控元件,因此可以收集实时性的传感器测温数值。在收集温度数值之后,单片机就可以接收实时性反馈。在正常工作时,单片机对于系统内部的器件都可以进行加热。
此外还包括其他类型的内部元件。例如RISC元件就属于效益与性能都很高的单片机元件,这类元件可以用于直接处理各类模拟信号。在系统内部,单片机包含了模数转换的多通道装置,经过调制从而输出多个不同的脉冲宽度。此外,单片机还具备暂停功能与唤醒功能,对于高性能与低功耗的A/D系统可以实现集成处理。在工业控制领域内,单片机已获得了较广的运用。
2.3系统测温与加热电路
具体在测温时,单片机可以连接定值电阻与温度传感器,在此基础上构建测温的分压电路。对于动态变化过程中的传感器而言,可以通过测量得到阻值与水温改变的规律。同时,单片机可以检测系统分压值,对于加热过程进行相应的判断。三极管与单片机可以相互连接,对于加热电路进行控制。依照设置的程序来实现控制,确保PTC处于正常运行的状态下。在此前提下,可控硅与光电耦合器二者可以构成完整系统,实现最基本的加热目标。对于可控硅进行控制时,可以选择耦合器来控制导通状态。
三极管与弱电电源可以进行连接,在此基础上密切连接发光二极管。完成了最基本的电路连接,三极管在导通的状态下就能用来调控脚低电平;与此同时,二极管也可以发出光线。光电耦合器在进行工作的状态下,就能输出实时性信号,可控硅因此也能迅速投入运行。对于元件在进行加热时,可以综合运用阴极与阳极来实现加热。系统达到特定温度的基础上,单片机可以接收测温数据,在这其中的温度传感器起到重要作用。如果输出的电平较低,系统将会停止加热工作。
三、结语
总而言之,随着互联网时代的到来,我国行业发展逐渐呈现出自动化、智能化趋势,在此种情况下,我国要想确保电网运行效率,就需要做好弱电控制强电工作,根据弱电、强电运行特点,优势与劣势情况,合理制定控制方法,确保弱电能够对强电做到合理控制,确保电力系统可以安全、稳定的运行,保证人们生活、学习、工作中的正常用电,提高人们生活水平。
参考文献:
[1]王刚.自动化控制中弱电控制强电的方法分析[J].工程技术研究,2017(1):118-119.
[2]朱洪杰,刘乃明,尚冬梅等.自动化控制中弱电控制强电的方法分析[J].科技创新与应用,2016(19):175.
[3]王子云.自动化控制中弱电控制强电的方法分析[J].大科技,2018(12):37-38.
[4]何澍炜.自动化控制中弱电控制强电的方法分析[J].无线互联科技,2017(2):118-119.
作者简介:
张笛秋(1991.10.10),性别:男;籍贯:上海;民族:汉;学历:本科;职称:助理工程师;职务:电气仪表工程师;研究方向:配电。