小麦对条锈病、白粉病和衰老抗性的分子细胞生物学研究

小麦对条锈病、白粉病和衰老抗性的分子细胞生物学研究

论文摘要

小麦是世界最早被驯化的作物之一,也是世界上最重要的粮食作物。在中国它仅次于水稻,因此小麦生产对国民经济发展有十分重要的战略意义。为了增加产量、改善品质,育种工作者努力培育耐生物和非生物胁迫的品种。条锈病和白粉病是世界上影响小麦生产的最重要的病害。防治小麦条锈病和白粉病的最有效的方法是培育抗病新品种。但是,由于我国的小麦抗条锈病和白粉病育种的遗传基础较为狭窄和抗源匮乏,导致近年来我国的小麦品种抗条锈病和白粉病特性丧失速度加快,小麦条锈病和白粉病的危害日益严重。许多研究证明小麦地方品种和它的近缘种属是小麦条锈病和白粉病的重要抗性基因资源,在小麦抗条锈病和白粉病育种中有着巨大的潜能。在籽粒灌浆期叶片老化将缩短有效率光合时间,所以也是严重影响小麦产量的另一个重要的生物因子。本研究的目的在于探索小麦抗外部生物逆境(条锈病和白粉病)和内部生物逆境(叶片老化)的分子细胞生物学基础。其结果如下: 1、小麦条锈病抗性材料的遗传组成分析 本研究用当前我国流行的条锈菌生理小种条中30、条中31、条中32、杂3、杂4、水源4和水源14对27个亲本及其51个衍生的F1和42个F2以及3个回交F2代群体进行接种鉴定。结果表明,R25、R57、R59、新抗5号、4285、爱民5号、爱民6号、温麦1号和R88对病原物表现为免疫或近免疫。而安农91168、陕253、苏3110、鲁955159、北Z76、烟辐188、温麦6号、淮阴9628、豫麦47、豫麦62、藁城8901和对照中国春则表现为高感。遗传分析和分子标记鉴定表明本研究使用的亲本材料的抗性有四种不同的组成模式:即主效基因加微效多基因控制的数量抗性;受YrCN19控制的垂直抗性;受有别于YrCN19的一对显性基因控制的垂直抗性;受寡基因控制的高抗材料。并将不同抗性基因进行聚合杂交从中选出抗性强于双亲的抗性材料,特别是R57中很可能存在促进条锈病抗性超亲分离的基因。同时对这些抗性在小麦抗病育种中的利用进行了讨论。 2、小麦抗条锈病新基因YrCN19的鉴定、染色体定位及其诊断标记 用当前流行的条锈菌生理小种CYR30、CYR31、CYR32和目前新出现的生理小种H46-4,SY11-4 and SY11-14进行接种鉴定,结果发现中国西南的几个小麦品系(品种)对其具有高度的抗性。将抗病品系爱民6号和感病的BeiZ76杂交并做了遗传分析,结果显示该抗病性状受一对显性单基因控制。用218对小麦微卫星标记对112

论文目录

  • 中文摘要
  • 英文摘要
  • 1 Chapter One Overview
  • 1.1 Wheat stripe rust
  • 1.1.1 Wheat resistance to stripe rust
  • 1.1.2 Genetics of wheat resistance to stripe rust
  • 1.1.3 Quntitative resistance to stripe rust
  • 1.1.4 Durable, high temperature, adult plant resistance and slow rusting
  • 1.1.5 Resistance mechanisms in plants to fungal pathogens
  • 1.1.6 Resistance to infection process
  • 1.1.7 Hypersensitivity resistance
  • 1.1.8 Molecular markers
  • 1.2 Wheat powdery mildew
  • 1.2.1 The origin and chromosomal location
  • 1.2.2 Molecular genetic studies of wheat powdery mildew resistance genes
  • 1.3 Leaf senescence
  • 1.3.1 Leaf senescence related with crop yield
  • 1.3.2 Degradation of the chloroplast, its significance and its possible role in initiation of leafsenescence
  • 1.3.3 Molecular mechanism
  • 1.3.4 Significance of chloroplast degradation and induction of leaf senescence
  • 1.3.5 Molecular mechanism of foliar senescence Leaf senescence as a programmed cell death
  • 1.3.6 Signals for expression of senescence-associated genes
  • 1.3.7 Regulation of gene action
  • 1.3.8 Photosynthesis studies in wheat
  • n) in wheat genetic background'>1.3.9 The influence of different genome on net photosynthesis rate (Pn) in wheat genetic background
  • 1.3.10 Physiological factors limiting the yield of crops
  • n'>1.3.11 Physiological index related with Pn
  • 1.3.12 Genetic diversity of photosynthesis
  • 2 Chapter Two
  • 2.1 Indtroduction
  • 2.2 Material and methods
  • 2.2.1 Host material
  • 2.2.2 Pathogen material
  • 2.2.3 Experimental design and plant culture
  • 2.2.4 Rust development and data collection
  • 2.3 Results
  • 2.3.1 Resistance response of parents and Fl's plants
  • 2.4 Disscusion
  • 3 Chapter Three
  • 3.1 Introduction
  • 3.2 Material and Method
  • 3.2.1 Plant materials
  • 3.2.2 Pathogen materials
  • 3.2.3 Testing for Resistance
  • 3.2.4 Preparation of plant DNA
  • 3.2.5 PCR amplification
  • 3.2.6 Electrophoresis and gel visualization
  • 3.2.7 Marker nomenclature
  • 3.2.8 Linkage analysis
  • 3.3 Results
  • 3.3.1 Resistance response of the analyzed wheat lines and cultivars
  • 3.3.2 Inheritance of the stripe rust resistance in AIM6
  • 3.3.3 Microsatellite marker linkages with resistance gene in wheat line AIM6
  • 3.3.4 The genetic map of the resistance gene to stripe rust in wheat line AIM6
  • 3.3.5 Marker diagnosis
  • 3.6 Discussion
  • 3.6.1 The gene for resistance to stripe rust in wheat line and cultivars CN19, AIM5 and AIM6
  • 3.6.2 Microsatellite marker and map location of the stripe rust resistance gene in wheat line AIM6
  • 3.6.3 The gene in wheat line AIM6 for resistance to stripe rust is a new gene
  • 3.6.4 The utilization of YrCN19 in wheat resistance breeding
  • 4 Chapter Four
  • 4.1 Introduction
  • 4.2 Materials and Method
  • 4.2.1 Plant material
  • 4.2.2 Pathogen material
  • 4.2.3 Plant culture and evaluation for stripe rust resistance
  • 4.2.4 Extraction of plant DNA
  • 4.2.5 PCR amplification
  • 4.2.6 Electrophoresis and gel visualization
  • 4.3 Results
  • 4.3.1 Resistance response of different genotypes
  • 4.3.2 Diagnosis of the resistance gene YrCN19
  • 4.3.3 The resistance genetic behavior varied across different genetic backgrounds
  • 4.4 Discussion
  • 4.4.1 Xgwm410 was a effective diagnostic marker of YrCN19
  • 4.4.2 The behavior of YrCN19 was related with genetic background influencing
  • 5 Chapter Five
  • 5.1 Introduction
  • 5.2 Material and methods
  • 5.2.1 Host material
  • 5.2.2 Pathogen material
  • 5.2.3 Experimental design and plant culture
  • 5.2.4 Rust development and data collection
  • 5.3 Results and Discussion
  • 5.3.1 The virulent of CYR32 to resistance gene
  • 5.3.2 The resistance response of different genotype to CYR32
  • 5.3.3 New wheat stripe rust resistance resources
  • 5.3.4 The utilization of new resistance resources in wheat resistance breeding
  • 6 Chapter Six
  • 6.1 Introduction
  • 6.2 Material and Method
  • 6.2.1 Plant materials
  • 6.2.2 Pathogen materials
  • 6.2.3 Testing for Resistance
  • 6.3 Results
  • 6.3.1 Resistance response of different
  • 6.3.2 Response of various Yr genotypes to CYR32
  • 6.3.3 Inheritance of the stripe rust resistance in R212
  • 6.4 Discussion
  • 7 Chapter Seven
  • 7.1 Introduction
  • 7.2 Material and methods
  • 7.2.1 Plant materials
  • 7.2.2 Pathogen materials
  • 7.2.3 Testing for Resistance
  • 7.2.4 Statistical analysis
  • 7.3 Results and analysis
  • 7.3.1 Resistance response of wheat line to powdery mildew pathogen
  • 7.3.2 Identification of new resistance genes from Elytrigia. Intermedium to wheat powdery mildew
  • 7.3.3 The genetic behavior of Pm35 and Pm36
  • 8 Chapter Eight
  • 8.1 Introduction
  • 8.2 Materials and Methods
  • 8.2.1 Plant material
  • 8.2.2 Determination of CHL content
  • 8.2.3 Measurement of accumulated MDA
  • 8.2.4 Measurement of photosynthetic indices
  • 8.2.5 Transmission electron microscopy(TEM)
  • 8.2.6 Grain weight and yield
  • 8.2.7 Statistical analysis
  • 8.3 Results
  • 2 populations and F2 family lines'>8.3.1 Exhibition of chlorosis phenotype in F2 populations and F2 family lines
  • 8.3.2 The differences between physiological and harvest indices
  • 8.3.3 Relationship between physiological indices and harvest indices
  • 8.3.4 Microstructure of chlorosis plants and "stay-green" plants
  • 8.4 Discussion
  • 8.4.1 Chlorosis phenotype is controlled by a recessive gene
  • 8.4.2 Significant difference in physiological indices and harvest indices, and the role of physiological indices in affecting grain yield
  • 8.4.3 Chloroplast centripetal movement in the chlorosis plants was related to leaf senescence
  • 9 Chapter Nine
  • 9.1 Introduction
  • 9.2 Experimental Procedures
  • 9.2.1 Growth of Plants
  • 9.2.3 Measurement of accumulated MDA
  • 9.2.4 Determination of CHL content
  • 9.2.5 Assay of enzyme activities
  • 9.2.6 Measurement of photosynthetic indices
  • 9.2.7 Transmission electron microscopy(TEM)
  • 9.2.8 Grain weight and yield
  • 9.2.9 Statistical analysis
  • 9.3 Results
  • 9.3.1 Identification of stay green wheat cultivar CN17 with delayed leaf senescence
  • 9.3.2 Biochemical parameters changes and biochemical efficiency during leaves senescence
  • 9.3.3 Changes of photosynthetic parameters
  • 9.3.4 Variation of chloroplast development in different genotypes
  • 9.3.5 Grain yields and weights
  • 9.4 Discussion
  • 10 Chapter Ten
  • 10.1 Introduction
  • 10.2 Materials and methods
  • 10.2.1 Genetic materials
  • 10.2.2 Plants grown
  • 10.2.3 Photosynthetic indices
  • 10.2.4 Grain weight and yield
  • 10.2.5 Diagnosis of 1RS/1BL translocation chromosome
  • 10.2.6 Determination of protein content
  • 10.2.7 Statistical analysis
  • 10.3 Results
  • 10.3.1 Morphological, physiological and yield index of both the stay green genotype CN17 and the control genotype MY11
  • 10.3.2 The transmission of 1BL/1RS translocated chromosome by both male and female gametes
  • 10.3.3 Correlation between indices
  • 10.4 Discussion
  • 11 Chatper Eleven
  • 11.1 Introduction
  • 11.2 Materials and methods
  • 11.2.1 Genetic materials
  • 11.2.2 Plants grown
  • 11.2.3 Measurement of photosynthetic indices
  • 11.2.4 Detection of 1RS/1BL translocation chromosome
  • 11.2.5 Measurement of protein content
  • 11.2.6 Measurement of yield index
  • 11.2.7 Procedure and analysis
  • 11.3 Results and discussion
  • Reference
  • Acknowledgments
  • 相关论文文献

    • [1].远缘杂交衍生后代中筛选小麦抗条锈病新抗源[J]. 植物病理学报 2016(06)
    • [2].小麦-小黑麦抗条锈病杂交后代种质农艺性状及细胞分子遗传学分析[J]. 中国农业科技导报 2017(06)
    • [3].小麦航天诱变抗条锈病突变体的筛选与鉴定[J]. 麦类作物学报 2016(12)
    • [4].我省条锈病防控成效显著[J]. 四川农业科技 2008(05)
    • [5].中国小麦品种抗条锈病现状及存在问题与对策[J]. 植物保护 2018(05)
    • [6].多穗型抗条锈病糯小麦绵13-923的产量与品质分析[J]. 安徽农业科学 2016(09)
    • [7].具特异性状人工合成小麦的条锈病抗性改良[J]. 西南农业学报 2014(01)
    • [8].2008年小麦苗条锈病发生情况[J]. 农化新世纪 2008(12)
    • [9].循化县小麦条锈病的发生及防治技术[J]. 现代农业科技 2017(17)
    • [10].不同小麦品种对条锈病的抗性评价[J]. 贵州农业科学 2009(11)
    • [11].小麦中后期主要病虫害发生重于常年 条锈病赤霉病和蚜虫重发态势明显[J]. 农药市场信息 2020(08)
    • [12].2017年芮城县小麦条锈病发生情况及防治对策[J]. 农业技术与装备 2017(06)
    • [13].小麦抗病遗传多样性对条锈病的调控效应[J]. 植物保护 2015(06)
    • [14].四川省22个小麦品种田间抗条锈病鉴定及聚类分析[J]. 广东农业科学 2018(10)
    • [15].四川地方小麦品种条锈病抗性研究[J]. 四川农业大学学报 2013(01)
    • [16].不同小麦材料成株期抗条锈病评价及变异分析[J]. 西南农业学报 2010(04)
    • [17].小麦抗条锈病回交育种的优势研究[J]. 湖北农业科学 2008(01)
    • [18].打赢条锈病防控攻坚战 确保夏粮获得好收成[J]. 中华人民共和国农业部公报 2009(03)
    • [19].贵州小麦主要品种(系)的条锈病抗性鉴定[J]. 贵州农业科学 2014(02)
    • [20].小麦遗传多样性控制条锈病试验[J]. 云南农业 2013(05)
    • [21].利用成像高光谱区分冬小麦白粉病与条锈病(英文)[J]. 红外与激光工程 2017(01)
    • [22].分子标记在小麦抗条锈病遗传育种中的应用研究进展[J]. 分子植物育种 2018(18)
    • [23].中国79个小麦品种(系)抗条锈病评价及基因分子检测[J]. 中国农业科学 2017(16)
    • [24].黄淮华北主产麦区病虫盛发 蚜虫条锈病赤霉病呈重发态[J]. 中国农资 2015(19)
    • [25].抗条锈病小麦突变体新品种—川辐6号[J]. 麦类作物学报 2013(04)
    • [26].10个川麦系列小麦品种在绵阳田间抗条锈病鉴定[J]. 广东农业科学 2017(08)
    • [27].小麦成株期抗条锈病种质筛选与评价[J]. 麦类作物学报 2011(02)
    • [28].197份小偃麦渗入系抗条锈病评价与分子鉴定[J]. 分子植物育种 2019(08)
    • [29].小麦抗条锈病一致性数量性状位点(MQTL)图谱构建[J]. 植物病理学报 2019(05)
    • [30].小麦赤霉病、条锈病这样防[J]. 农村科学实验 2018(03)

    标签:;  ;  ;  ;  

    小麦对条锈病、白粉病和衰老抗性的分子细胞生物学研究
    下载Doc文档

    猜你喜欢