论文摘要
车辆自动分类在高速公路电子收费站和其他相关智能运输系统(ITS)中变得越发重要。传统的循环检测和摄像检测都存在一些缺陷。循环检测器的维护昂贵,基于视频的检测系统对环境条件敏感,在车型分类中劣势明显。改进过的新一代范围激光传感器具有对光照条件不敏感的特性,并且提供相对于现有系统更好的车辆检测和分类的比率。本文提出一种高速公路上车辆自动检测分类算法系统。该分类算法的提出基于表达车辆的参数空间,包括车身高度,长度和宽度。除此之外,高度轮廓的特征矢量被提取出来。包括高度轮廓在内的特征向量空间是为了加强鉴别具有类似的长度和高度车辆能力的充分条件。然而,对某些车辆类型,使用高度轮廓是没有必要的。本文还体现了如果激光传感器满足一定要求,一个精确的特征向量可以被提取出来,鉴定车辆类别可以使用简单的确定性算法。
论文目录
摘要AbstractChapter 1 Introduction1.1 Overview Motivation1.2 Methodology1.3 Structure of ReportChapter 2 General Vehicle Classification2.1 Introduction2.2 The Vehicle Classification Problem2.3 Uses for Classification Data2.4 Current Vehicle Classification Methods2.4.1 Axle Based Counters2.4.2 Vehicle Length Based Counters2.4.3 Vision Based Classification2.4.4 Height Profile Based Classification2.4.5 Classification System FrameworkChapter 3 System Operating for Vehicle Detection and Classification3.1 AVDC System3.2 The Technologies Using in AVDC System3.2.1 Inductive Loop Detectors3.2.2 Magnetometer Sensors3.2.3 Microwave Radar3.2.4 PIR(Passive Infra Red)Detectors3.2.5 Ultrasonic Detectors3.2.6 Laser Fixed Beam Detectors(Active Infrared)3.2.7 Laser Scanning Beam Detectors(Active Infrared)3.2.8 Video Image Processing(VIP)Detectors3.3 High Fidelity Laser Sensors3.4 Advanced Laser Sensor DetectorsTM 800 series'>3.4.1 AutoSenseTM 800 series3.4.2 Universal Laser Sensor(ULS)Chapter 4 Data Acquisition and Vehicle Detection4.1 Detection Process4.2 Segmentation4.3 Height Profile of the Vehicle4.4 Data CorrectionChapter 5 Vehicle Classification Methodology5.1 Vehicle Feature Extraction5.1.1 Height5.1.2 Width5.1.3 Length5.1.4 Speed5.2 Vehicle Classification Technique5.2.1 Classification Scheme5.2.2 Vehicle Classification Algorithm5.2.2.1 Height,Length and Width Based Classification5.2.2.2 Height Profile Based Classification5.2.2.3 Classification Algorithm Steps5.2.3 The Input Database Used For Classification5.2.4 Experimental Results5.3 DiscussionCONCLUSIONReferencesAcknowledgment
相关论文文献
标签:检测论文; 车辆自动分类论文; 特征提取论文; 高度轮廓论文; 公路车辆论文; 激光传感器论文;