非线性薛定谔方程的高阶紧致分裂多辛格式

非线性薛定谔方程的高阶紧致分裂多辛格式

论文摘要

这篇论文主要针对不同类型的薛定谔方程提出了一些能做到更精确更省时的新格式,像高阶紧致ADI格式,高阶紧致ADI分裂格式,辛傅里叶拟谱算法以及高阶紧致分裂多辛格式.我们对格式的稳定性,守恒性,保辛性等性质进行了详细的理论分析并利用具体的数值实验验证对应的理论性质.在第2章中,我首先引入了一些有关辛几何和辛空间的基本知识,然后介绍一些解决薛定谔方程的常用格式,如高阶紧致格式,分裂格式,交替方向隐式方法.这些方法都各具优势,包括高精度性,省时性,保辛性,快捷性.最后我们主要学习了有关辛算法和Runge?kutta方法的理论知识.在第3章中,我们先针对二维线性薛定谔方程设计了高阶紧致离散与交替方向隐式方法结合的算法.经过理论分析,该算法无条件稳定并且能够保证两个离散守恒.接着,我们提出了具有高精度和省时性的高阶紧致ADI分裂格式来处理二维的非线性薛定谔方程.在该法的基础上,我们继续延伸到三维问题上,主要选用高阶紧致方法和Douglas ADI方法相结合的方法,理论证明其具有无条件稳定性.最后,我们利用具体的数值实验证明了理论分析的省时,高精度方面的优越性.在第4章中,我们主要研究辛傅里叶拟谱算法来解决KGS方程组,并且提出了与其他有关文献不同的哈密尔顿公式.我们先用拟谱方法对有限维的哈密尔顿系统进行空间离散,继而分别用Sto¨rmer/Verlet算法和中点欧拉方法做时间离散.据分析Sto¨rmer/Verlet算法是显式的,所以具有程序运算快捷的特点,而中点欧拉方法具有准确模拟原问题的优势.最后我们利用具体的范例数据验证了该法能长时间的模拟各种孤子波形.在第5章中,我们提出了高阶紧致分裂多辛格式解决耦合的非线性薛定谔方程.通过理论分析该格式具有无条件稳定性和空间方向可达六阶精度的优势,并且它还满足一系列守恒律,包括多辛守恒律,电荷守恒,能量守恒,动量守恒.其中分裂方法对于省时性方面有主要贡献,我们设计了不同类型的数值试验来分别验证该法的有效性和快捷性.

论文目录

  • Abstract
  • 摘要
  • 1 Introduction
  • 2 Preliminaries
  • 2.1 Symplectic geometry and symplectic space
  • 2.2 Discrization for the Schr¨odinger equations
  • 2.2.1 High order compact method for the spatial approximation
  • 2.2.2 Temporal discrization for the Schr¨odinger equation
  • 2.3 Symplectic and Runge-Kutta methods
  • 2.3.1 Symplectic methods
  • 2.3.2 Runge-Kutta methods
  • 3 HOC-ADI scheme for multi-dimensional Schr¨odinger equations
  • 3.1 HOC-ADI scheme for the 2D LS equations
  • 3.1.1 Construction of HOC-ADI scheme
  • 3.1.2 Theoretical analysis
  • 3.2 HOC-ADI splitting approach for 2D NLS equations
  • 3.3 Extension to the three-dimensional LS equations
  • 3.4 Numerical examples
  • 4 Symplectic Fourier pseudo-spectral schemes for the Klein-Gordon-Schr¨odinger equation
  • 4.1 Construction of symplectic Fourier pseudo-spectral scheme
  • 4.2 Numerical tests
  • 5 HOC splitting multi-symplectic scheme for the CNLS equations
  • 5.1 Framework of HOC splitting multi-symplectic scheme
  • 5.1.1 Multi-symplectic structure for the CNLS equations
  • 5.1.2 Splitting multi-symplectic technique for the CNLS equations
  • 5.1.3 Discretization for the linear subproblem
  • 5.1.4 Discretization for the nonlinear subproblem
  • 5.2 HOC-SMS scheme for the CNLS equations
  • 5.3 Discrete conservation laws
  • 5.4 Numerical Verifications
  • 6 Conclusions and Prospects
  • Bibliography
  • Acknowledgements
  • Publications
  • 相关论文文献

    • [1].Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schr?dinger Equations[J]. Acta Mathematicae Applicatae Sinica 2020(02)
    • [2].Explicit Multi-symplectic Method for a High Order Wave Equation of KdV Type[J]. Communications in Mathematical Research 2018(03)
    • [3].An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets[J]. Acta Mechanica Sinica 2017(05)
    • [4].Multi-Symplectic Geometry and Explicit Multi-symplectic Method for Solving Zhiber-Shabat Equation[J]. Journal of Mathematical Research with Applications 2015(05)
    • [5].A new kind of optimal second-order symplectic scheme for seismic wave simulations[J]. Science China(Earth Sciences) 2014(04)
    • [6].Multi-symplectic method for the generalized(2+1)-dimensionalKdV-mKdV equation[J]. Acta Mechanica Sinica 2012(03)
    • [7].Analytical solutions to edge effect of composite laminates based on symplectic dual system[J]. Applied Mathematics and Mechanics(English Edition) 2011(09)
    • [8].Optimized third-order force-gradient symplectic algorithms[J]. Science China(Physics,Mechanics & Astronomy) 2010(09)
    • [9].The complex multi-symplectic scheme for the generalized sinh-Gordon equation[J]. Science in China(Series G:Physics,Mechanics & Astronomy) 2009(10)
    • [10].Explicit multi-symplectic method for the Zakharov-Kuznetsov equation[J]. Chinese Physics B 2012(07)
    • [11].Multi-symplectic method for generalized fifth-order KdV equation[J]. Chinese Physics B 2008(11)
    • [12].New explicit multi-symplectic scheme for nonlinear wave equation[J]. Applied Mathematics and Mechanics(English Edition) 2014(03)
    • [13].Multi-symplectic method to analyze the mixed state of Ⅱ-superconductors[J]. Science in China(Series G:Physics,Mechanics & Astronomy) 2008(12)
    • [14].Multi-symplectic variational integrators for nonlinear Schrdinger equations with variable coefficients[J]. Chinese Physics B 2016(01)
    • [15].Fracture analysis of magnetoelectroelastic bimaterials with imperfect interfaces by symplectic expansion[J]. Applied Mathematics and Mechanics(English Edition) 2017(08)
    • [16].Ruan's conjecture on singular symplectic flops of mixed type[J]. Science China(Mathematics) 2014(06)
    • [17].New key pre-distribution scheme using symplectic geometry over finite fields for wireless sensor networks[J]. The Journal of China Universities of Posts and Telecommunications 2017(05)
    • [18].Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control[J]. Applied Mathematics and Mechanics(English Edition) 2019(01)
    • [19].The symplectic eigenfunction expansion theorem and its application to the plate bending equation[J]. Chinese Physics B 2009(09)
    • [20].Several fourth-order force gradient symplectic algorithms[J]. Research in Astronomy and Astrophysics 2010(02)
    • [21].Donaldson's Q-operators for symplectic manifolds[J]. Science China(Mathematics) 2017(06)
    • [22].Full automorphism group of the generalized symplectic graph[J]. Science China(Mathematics) 2013(07)
    • [23].Multi-symplectic wavelet splitting method for the strongly coupled Schrodinger system[J]. Chinese Physics B 2012(12)
    • [24].Second order conformal multi-symplectic method for the damped Korteweg–de Vries equation[J]. Chinese Physics B 2019(05)
    • [25].The Iteration Formulae of the Maslov-Type Index Theory in Weak Symplectic Hilbert Space[J]. Chinese Annals of Mathematics,Series B 2018(01)
    • [26].Highly accurate symplectic element based on two variational principles[J]. Acta Mechanica Sinica 2018(01)
    • [27].Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme[J]. Chinese Physics B 2011(11)
    • [28].Science Letters:On numerical calculation in symplectic approach for elasticity problems[J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) 2008(05)
    • [29].物理学咬文嚼字之八十三 简单与复杂[J]. 物理 2017(02)
    • [30].Self-dual Codes with Symplectic Inner Product[J]. Communications in Mathematical Research 2015(04)

    标签:;  ;  ;  ;  ;  ;  

    非线性薛定谔方程的高阶紧致分裂多辛格式
    下载Doc文档

    猜你喜欢