论文摘要
微流控系统是20世纪90年代发展起来的一项高新技术,其主要以分析化学和分析生物化学为基础,以微机电加工技术为依托,以微管道网络为结构特征,是当前微全分析系统乃至芯片实验室发展的重点。在微流控系统中,微流体驱动技术是其中的一项关键技术,微流体驱动技术的好坏直接决定微流控系统的性能。尽管微流体驱动技术在过去的十余年得到了快速发展,但微流体驱动系统集成化和微流体驱动系统可靠性的提高仍然是微全分析系统的薄弱环节。交流电渗(AC electroosmosis, ACEO)是近几年发展起来的一项新技术,它以驱动电压低、芯片制作过程简单、容易与系统集成等优点而倍受学者青睐。目前国外对该技术研究还处于不断探索和完善阶段,而在国内关于该技术的研究成果报道甚少,因此展开对ACEO驱动微流体技术的研究具有重要的意义。本文从电渗驱动理论的基础出发,对直流电渗(DC electroosmosis, DCEO)和ACEO的驱动原理及双电层的产生的机理进行了详细的理论分析,揭示了其共同点和主要特征。经过设计毛细管DCEO微泵并进行实验,研究了DCEO流速与驱动电压、微通道结构的关系。针对ACEO中双电层的产生是由于电极极化产生的特征,从理论上推导了ACEO的流速公式。在研究非对称电极ACEO中,根据非对称电极ACEO驱动微流体实验现象,建立了非对称电极ACEO微流体驱动的物理模型。分析了非对称电极ACEO电场和流场特性及相互关系,研究了其边界条件的建立过程。对非对称电极ACEO驱动微流体流场进行了仿真,通过仿真与实验结果的对比分析,验证了理论研究的正确性。开展了行波电渗(Traveling wave electroosmosis,TWEO)驱动微流体的理论和实验研究。提出了一种新颖的用对称电极设计非对称电极ACEO驱动微流体芯片的方法,设计了驱动电路。阐述了粒子图像测速法在非对称电极ACEO和TWEO中的应用及实验数据处理方法,通过对比分析和实验研究,比较了两者芯片的加工过程,验证了在等效驱动电压的情况下,TWEO比ACEO驱动微流体具有更高的效率。以Gouy–Chapman–Stern双电层理论为基础,建立了TWEO驱动微流体非线性物理模型,经过线性变换,对TWEO驱动微流体进行了仿真分析,并对封闭通道内的Poiseuille流进行了分析。通过TWEO驱动微流体流场实验,验证了TWEO驱动微流体理论模型的正确性,获得了TWEO流场流线比ACEO流场流线更平坦结论。对TWEO驱动微流体流速影响因素进行实验及理论研究,研究了不同电导率溶液在TWEO中的容抗比例系数的确定方法和芯片电极的加工工艺,并对芯片电极材料、芯片基底材料、通道材料的选择进行了分析。对驱动不同电导率溶液的实验结果表明,电导率越小,出现最大速度峰值时的频率越小、速度峰值越大。并且通过改变电极参数可以达到改变电渗流流速及最大速度峰值时的频率的目的;同时,在低电势驱动下,在TWEO驱动微流体中,可以忽略电热效应、粒子介电泳运动等对实验测速的影响。综上所述,通过本文对电渗流微流体驱动基础理论和相关技术的研究,进一步证实了非对称电极ACEO驱动微流体具有输入信号电压低、芯片容易与系统集成等特点,比DCEO更具有工程应用的优越性。同时,理论及实验研究结果表明,TWEO比非对称电极ACEO在驱动微流体中更具有效率。因此,本论文的研究结果为电渗流技术的进一步深入研究和工程应用具有重要参考价值。本论文的研究得到了“高等学校学科创新引智计划项目(B07018)”的资助,同时受国家留学基金委“国家建设高水平大学公派研究生项目”资助(录取文号为留金出[2007]3020号)。
论文目录
相关论文文献
- [1].环球眼[J]. 课堂内外(科学Fans) 2017(06)
- [2].化工领域中的微流体驱动方式[J]. 广州化工 2012(20)
- [3].石英微流体器件制备仪的研制与实验研究[J]. 中国机械工程 2010(13)
- [4].基于声表面波实现数字微流体的产生[J]. 传感技术学报 2010(10)
- [5].声表面波跨越式输运数字微流体[J]. 压电与声光 2013(06)
- [6].基于声表面波技术实现微流体数字化[J]. 压电与声光 2011(03)
- [7].声表面波驱动微流体研究[J]. 传感技术学报 2008(10)
- [8].面向微流体驱动的液晶流动计算及可视化软件设计与实现[J]. 科技创新与生产力 2016(06)
- [9].基于声表面波技术实现微通道内微流体的融合[J]. 压电与声光 2012(05)
- [10].微通道导引下数字微流体快速混合[J]. 传感技术学报 2009(06)
- [11].关于微流体混和器发展的研究[J]. 科技创新导报 2008(02)
- [12].内嵌式微流体散热技术实现芯片高效冷却[J]. 电子机械工程 2020(03)
- [13].微流体流道耗尽边界及交界扩散层的设计研究[J]. 电源技术 2015(06)
- [14].微流体数字化技术制备鱼卵微胶囊[J]. 化工学报 2011(04)
- [15].基于微流体数字化技术的流式细胞术的设计[J]. 化工学报 2010(04)
- [16].基于声表面波技术数字微流体微混合器研究[J]. 电子器件 2009(01)
- [17].基于声表面波技术数字微流体基片间输运研究[J]. 传感技术学报 2009(10)
- [18].大批量生产微流体(微模型)设备的研究进展[J]. 沿海企业与科技 2019(02)
- [19].微流体内基于水力聚焦的单细胞流形成的仿真[J]. 微纳电子技术 2017(03)
- [20].基于电解反应的便携式微流体泵送装置设计及其性能研究[J]. 河北工业大学学报 2016(03)
- [21].驱动电压波形修圆对微流体脉冲惯性力和驱动效果的影响[J]. 光学精密工程 2012(10)
- [22].无阀压电微流体泵工作特性与结构参数[J]. 机械工程学报 2008(11)
- [23].美国科学家研发微流体通道防化玻璃涂料[J]. 有机硅氟资讯 2008(03)
- [24].压电基片上集成微通道数字微流体微混合器研究[J]. 固体电子学研究与进展 2010(03)
- [25].生物化学中微流体数字化技术的应用分析[J]. 生物技术世界 2015(11)
- [26].飞秒激光加工微流体管的实验研究[J]. 中国原子能科学研究院年报 2013(00)
- [27].喷墨打印的微流体多组分分析化学感应纸[J]. 广东印刷 2013(06)
- [28].基于双流体动力学的微流体分配新技术[J]. 中国机械工程 2014(01)
- [29].基于液晶引流效应的全新微流体驱动方式[J]. 机械工程学报 2012(16)
- [30].微化学反应的微流体数字化实现及实验研究[J]. 化工学报 2009(03)