论文摘要
全球碳循环和全球气候变化过程中土地利用方式起重要作用,因此了解土壤中碳释放(CO2和CH4)及其环境影响因素,便于探讨亚热带不同土地利用方式生态系统中碳动力学机制。在湖北省咸宁地区和秭归县设置采样点,采用静态箱法监测不同土地利用方式下土壤CO2、CH4释放和环境因素的关系。为了更进一步了解不同土地利用方式下对土壤含碳量的影响,设置62天培养试验,在水分含量WHC为20-100%和温度为5-45℃下测定四种土地利用方式土壤CO2排放通量,同时在水稻生长季节开展田间观测试验以预测红壤固碳能力。试验结果表明:不同土地利用方式下土壤是大气CH4吸收“汇”和CO2排放“源”。年平均CO2释放量范围为5.3~10.5 Mg CO2ha-1yr-1,年平均CH4释放量范围为+0.47~-2.37 kg CH4ha-1yr-1,林地土壤CO2和CH4排放通量显著低于农田土壤,所有土地利用方式中菜地土壤CO2排放通量最大,常耕CO2果园排放通量显著高于免耕果园,揭示耕作激发了CO2产生,而常耕果园CH4吸收通量显著低于免耕果园,说明耕作影响甲烷氧化菌的产生。受土壤温度、水分含量、微生物碳、微生物氮和可溶性有机碳的季节性变化的驱动土壤CO2和CH4排放或吸收存在明显的季节性变化规律,湿热季节(4月-9月)CO2的排放通量显著高于干冷季节(10月-3月)。土壤CO2排放通量和微生物商(Qt)、MBC:MBN显著相关,而与DOC:DON不相关。逐步回归单因素分析表明,不同土地利用方式下土壤温度、WFPS、DOC、MBC和MBN对CO2排放有显著影响,而DON对CO2影响较小,然而,在所有土地利用方式中以土壤温度、WFPS、DOC、MBC、DON和MBN为模型,CO2排放与这些因素呈显著相关。所有土地利用方式中综合分析所有影响因子,土壤温度是控制CO2排放最重要因子。由季节性的土壤温度、WFPS、土壤NO3--N和土壤NH4+-N含量的驱动,干冷季节的CH4吸收显著高于湿热季节,以线性逐步回归方程分析表明,所有土地利用方式中土壤温度、WFPS、土壤NO3--N和土壤NH4+-N含量显著影响土壤CH4排放。为预测不同土地利用方式中土壤有机碳动力学机制,培养试验中土壤有机碳矿化分为活性碳……在四种土地利用方式下的培养试验结果表明:(1)土壤活性碳平均驻留时间为49-65天,占总有机碳的1.2-3.5%,(2)土壤缓效性碳平均驻留时间为2-27年,占总有机碳的25.3-60%,惰效性碳占总有机碳的36.5-73.9%。林地含较高的惰效性碳和较低的活性碳。土壤碳呼吸(SCDR)与所有形态有机碳、C:N比、pH、土壤呼吸(SDR)和总氮相关性较好,土壤有机碳SOC与Cs,CrSDR,总氮和WHC(含水量)呈正相关,与容重呈负相关。稻田、果园、林地、旱地Q10分别为1.90±0.17,2.19±0.32,2.34±0.32,3.23±0.47。不同Q10值说明土壤有机碳对温度的敏感度,不同土地利用方式中由于土壤有机碳含量不同,造成Q10值不同。稻田试验不同处理中,植株土壤施氮肥显著促进CO2排放,而株间土壤和空地没有影响。而空地土壤中,CO2随施氮量增加而降低,说明氮肥的施用抑制微生物活动。……说明氮肥加秸秆处理有减缓全球碳释放趋势。三种温室气体累计全球增温潜势(GWP)大小依次为菜地>旱地>果园>林地,所有土地利用方式中N2O的GWP显著高于CH4,林地CH4吸收完全抵消N2O释放的GWP,总体来说,CH4吸收一定程度上抵消CO2和N2O排放的GWP,本研究得出主要结论如下:(1)由于亚热带地区不同土地利用方式下土壤环境因子存在差异从而使CO2和CH4排放差别较大,则土地利用方式决定GWP的大小,而土壤温度是最重要的影响因子,不同土地利用方式下其它土壤条件相互作用影响底物的矿化从而影响CO2和CH4的排放。(2)不同土地利用方式下土壤有机碳有不同的温度敏感度,且植物类型和耕作方式控制土壤微生物和生化特性,是重要的影响碳释放因素。(3)氮的施入增加CO2的排放,然而,氮肥和油菜秸秆配施可使红壤中的碳增加是最合理的农业生产方式。(4)由于不同土地利用方式存在不同的管理方式造成土壤特性差异,从而使碳释放率不同,因此,如果在不同的土地利用方式下采取合理的管理措施,可使亚热带地区土壤成为巨大的土壤碳库。
论文目录
Abstract(English)Abstract(Chinese)AbbreviationChapter 1 Review of literature1.1.Overview2 fluxes'>1.2.Factors determining soil CO2fluxes1.2.1.Overview1.2.2.Temperature and moisture1.2.3.Fertilizer1.2.4.Vegetation1.2.5.Litter1.2.6.Soil characteristics4 fluxes'>1.3.Factors determining soil CH4fluxes1.3.1.Overview1.3.2.Soil moisture1.3.3.Temperature and moisture1.3.4.Crop management and tillage1.3.5.Fertilization1.3.6.Landscape1.3.7.Soil characteristics2 fluxes'>1.4.Effect of land use on soil CO2fluxes4 fluxes'>1.5.Effect of land use on soil CH4fluxes1.6.Factors determining C sequestration capacity of the soil1.6.1.Tillage and residue management1.6.2.Carbon sequestration with application of manures1.6.3.Carbon sequestration with organic agriculture1.6.4.Effects of fertilization and straw/manure on soil C sequestration1.6.5.Benefits of sequestering carbon1.7.Aims1.7.1.C fluxes and its determinants under different land uses1.7.2.SOC pools under different land uses1.7.3.C sequestration capacity of a paddy fieldChapter 2 Materials and methods2.1.Site description2.1.1.Site 12.1.2.Site 22.2.Experimental design2 fluxes between different land uses in Xianning'>2.2.1.Study 1:Differences of soil CO2 fluxes between different land uses in Xianning2.2.2.Study 2:SOC dynamics from different land uses during an incubation study2 and CH4 fluxes from different land uses in Zigui'>2.2.3.Study 3:Soil CO2 and CH4 fluxes from different land uses in Zigui2 fluxes from different land uses in Zigui'>2.2.4.Study 4:Effect of microbial biomass and dissolved organic carbon and nitrogen on soil CO2 fluxes from different land uses in Zigui2.2.5.Study 5:Estimation of soil carbon sequestration potential of a paddy field2.3.Soil sampling and analysis methods2.3.1.Field studies2.3.2.Incubation study2.4.Measurement of other environmental factors2.5.Measurement of gas fluxes2 flux'>2.5.1 Soil CO2flux4 fluxes'>2.5.2 Soil CH4fluxes2.6.Estimation of net primary and ecosystem production2.7.Model used for incubation study2.8.Statistical analysis2 flux among paddy,orchard,woodland and upland in Xianning'>Chapter 3 Differences in soil CO2 flux among paddy,orchard,woodland and upland in Xianning3.1.Overview3.2.Results2 fluxes'>3.2.1 Soil CO2fluxes3.2.2.Soil temperature,WFPS and dissolved organic carbon2 flux versus soil temperature,WFPS and dissolved organic carbon'>3.2.3.Soil CO2 flux versus soil temperature,WFPS and dissolved organic carbon2 flux'>3.2.4.Predominating factors controlling soil CO2flux3.3 Discussion2 fluxes'>3.3.1.Soil CO2fluxes2 fluxes'>3.3.2.Effect of land use on soil CO2fluxes2 fluxes'>3.3.3.Effect of environmental variables on soil CO2fluxes2 flux'>3.3.4.Predominating factors controlling soil CO2fluxChapter 4 Carbon dioxide emissions in association with soil organic carbon pools from red soil under paddy,orchard,woodland,and upland in Xianning4.1.Overview4.2.Results4.2.1.Soil characteristics4.2.2.Characteristics of SOC decomposition4.2.3.SOC pools and dynamics4.2.4.Soil organic carbon vs soil properties2 flux vs soil temperature and moisture'>4.2.5.Soil CO2 flux vs soil temperature and moisture4.3.Discussion4.3.1.Soil properties4.3.2.Carbon mineralization2 fluxes'>4.3.3.Effect of soil moisture and temperature on soil CO2fluxes10'>4.3.4.Effect of soil moisture and temperature on Q102 fluxes'>4.3.5.Effect of land use on soil CO2fluxes2 and CH4 fluxes of upland,vegetable field,orchard and pine forest in Three Gorges Reservoir area'>Chapter 5 CO2 and CH4 fluxes of upland,vegetable field,orchard and pine forest in Three Gorges Reservoir area5.1.Overview5.2.Results2 and CH4 fluxes'>5.2.1.Seasonal and annual variations in CO2 and CH4fluxes2 and CH4 fluxes'>5.2.2.Land use effect on CO2 and CH4fluxes2 and CH4 fluxes'>5.2.3.Impacts of environmental variances on CO2 and CH4fluxes5.3.Discussion2 and CH4 budgets'>5.3.1.Annual CO2 and CH4budgets2 and CH4 fluxes'>5.3.2.Effect of land use on CO2 and CH4fluxes2 and CH4 fluxes'>5.3.3.Effect of environmental variables on CO2 and CH4fluxes5.3.4.Global warming potentialChapter 6 Effect of microbial biomass,and dissolved organic carbon and nitrogen on soil respiration in upland,vegetable field,orchard,and pine forest in Three Gorges Reservoir Area6.1.Overview6.2.Results6.2.1.Environmental factors6.2.2.Microbial biomass C and N,and dissolved organic C and N2 fluxes'>6.2.3.Seasonal variations in CO2fluxes2 fluxes'>6.2.4.Land use effect on CO2fluxes2 fluxes'>6.2.5.Impacts of environmental variances on CO2fluxes6.3.Discussion2 fluxes'>6.3.1.Annual CO2fluxes2 fluxes'>6.3.2.Effect of seasonal changes on CO2fluxes2 fluxes'>6.3.3.Effect of land use on CO2fluxes2 fluxes'>6.3.4.Effect of environmental variables on CO2fluxes2 flux'>6.3.5.Predominating factors controlling soil CO2flux2 emission in a red paddy soil(Ultisol)as affected by straw and nitrogen fertilizer applications:Implications for C sequestration'>Chapter 7 CO2 emission in a red paddy soil(Ultisol)as affected by straw and nitrogen fertilizer applications:Implications for C sequestration7.1.Overview7.2.Results7.2.1.Crop yield and biomass2 fluxes'>7.2.2.Soil CO2fluxes2 flux'>7.2.3.Soil temperature versus soil CO2flux7.3.Discussion2 fluxes'>7.3.1.Soil CO2fluxes2 fluxes'>7.3.2.Effect of crop on soil CO2fluxes2 fluxes'>7.3.3.Effect of N fertilizer on soil CO2fluxes7.3.4.Net primary and ecosystem productionChapter 8 Research evaluation and future needs for sustainability and global C storage8.1.Land use effect on soil C budget8.2.Management impacts on soil organic carbon8.2.1.Land use8.2.2.Future needs to characterize the effects of land use on SOC sequestration8.2.3.Inorganic and organic fertilization8.2.4.Future needs to characterize the effects of inorganic and organic fertilization on SOC sequestration8.3.GHG emissions2 emissions'>8.3.1.Reducing soil CO2emissions4 emissions'>8.3.2.Reducing soil CH4emissions2 and CH4 fluxes'>8.3.3.Future needs to characterize CO2 and CH4fluxesConclusionsReferencesAcknowledgementAppendix
相关论文文献
- [1].西洞庭湖季节性淹水和植被类型对温室气体排放通量的影响[J]. 湖泊科学 2020(03)
- [2].设施菜田夏季闷棚对还田秸秆矿化和CO_2排放的影响[J]. 安徽农业科学 2020(02)
- [3].模拟冻融对长白山地区2种温带森林土壤温室气体排放的影响[J]. 扬州大学学报(农业与生命科学版) 2020(03)
- [4].沼液施用对潮土氧化亚氮排放通量的影响[J]. 浙江农林大学学报 2012(06)
- [5].基于不同监测与估算方法的设施菜田N_2O排放量比较[J]. 植物营养与肥料学报 2020(08)
- [6].螃蟹活动对闽江河口互花米草沼泽湿地土壤温室气体排放通量的影响[J]. 地球环境学报 2019(04)
- [7].施肥量对福州平原稻田CO_2排放及其温度敏感性的影响[J]. 环境科学学报 2017(06)
- [8].安徽淮河流域农田温室气体排放通量特征研究[J]. 安徽农业科学 2011(32)
- [9].若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响[J]. 湿地科学 2015(03)
- [10].不同干扰强度下三江平原湿地土壤温室气体排放对冻融作用的响应[J]. 环境科学研究 2020(08)
- [11].土壤质地及环境因子对农田N_2O排放的影响[J]. 安徽农业科学 2008(14)
- [12].北京密云水库甲烷排放通量时空特征及其影响因素研究[J]. 湿地科学 2011(02)
- [13].氮肥对西双版纳地区稻田N_2O排放通量的影响[J]. 农业环境科学学报 2008(05)
- [14].连续多年施肥后设施土壤N_2O排放通量特征[J]. 江苏农业学报 2020(04)
- [15].湿地生态系统CO_2排放通量影响因素研究进展[J]. 科技风 2015(08)
- [16].煤火裂隙区CO_2排放通量观测装置的开发与应用[J]. 环境污染与防治 2014(02)
- [17].不同耕作方式与施氮水平下稻田CH_4排放的动态变化[J]. 南方农业学报 2012(10)
- [18].三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素[J]. 应用生态学报 2008(06)
- [19].2016年10~11月宜昌莲心湖水——气界面CO_2排放通量[J]. 湿地科学 2020(03)
- [20].洞庭湖湿地洪水期甲烷扩散和气泡排放通量估算及水环境影响分析[J]. 湖泊科学 2019(04)
- [21].上海城市草坪CO_2排放通量特征及其影响因子[J]. 长江流域资源与环境 2011(04)
- [22].中国农田N_2O排放通量原位观测研究的汇总分析[J]. 农业环境科学学报 2009(12)
- [23].基于漂浮箱法和扩散模型法测定淡水养殖鱼塘甲烷排放通量的比较[J]. 环境科学 2020(02)
- [24].亚热带森林植物挥发性有机物(BVOCs)排放通量与大气甲醛之间的关系[J]. 生态环境学报 2018(06)
- [25].土壤氧气可获得性对双季稻田温室气体排放通量的影响[J]. 生态学报 2013(18)
- [26].白洋淀湖泊湿地氧化亚氮的排放通量初探[J]. 生态环境 2008(05)
- [27].不同农业措施下冬小麦田N_2O排放通量的特征[J]. 中国农业气象 2008(02)
- [28].加气灌溉对番茄地土壤N_2O排放的影响[J]. 灌溉排水学报 2015(S1)
- [29].杭州湾滨海湿地CH_4排放通量的研究[J]. 土壤 2014(06)
- [30].不同种植年限人工苜蓿地土壤N_2O排放通量[J]. 生态学杂志 2015(05)
标签:碳库论文; 土地利用方式论文; 吸收论文; 土壤吸收论文; 排放论文; 土壤排放论文; 上壤温度论文;
Impacts of Different Land Uses on Carbon Fluxes from Subtropical Soils in Central China: Implications for Carbon Sequestration
下载Doc文档