FP-Tree算法在自适应学习系统学习者特征模型建立中的应用研究

FP-Tree算法在自适应学习系统学习者特征模型建立中的应用研究

论文摘要

在自适应学习系统中,由于学习者的学习特征众多,数据库系统是一个庞大的数据资源,每天都会有大量的记录存储到数据库中,其中可能会包含一些重复的、无关紧要的、甚至是相互矛盾的记录。另外当前教育学专家对影响学生学习的特征的说法不一,造成教育学领域对学习者特征的评判没有统一的标准。因此,需要对大量的学习者的学习日志进行统计分析,找出对学习者影响最大、最具诊断意义的学习特征。本文以自适应学习系统为背景,利用人工数据合成工具生成实验数据,研究出一个适合于自适应学习系统的关联挖掘算法,并将此挖掘算法应用于自适应系统中,逐步纠正自适应学习系统中学习者特征模型,使学习者更好地利用系统进行学习。根据自适应学习系统学习者特征的特点,本文对FP-Tree算法进行了改进。首先从算法自身进行改进,针对频繁项集过多的问题,提出在FP-growth的基础上进行改进的关键项抽取算法KEFP-growth,忽略了在分析时不关心的频繁项集。接着从数据源方面进行了改进,针对数据源过大导致挖掘效率低下甚至无法在内存中加载FP-Tree的问题,本文提出数据投影算法,就是采用分而治之的思想,对数据库频繁1-项集分割成各个频繁1-项集的数据库子集,然后分别对数据库子集进行挖掘,再将其合并。最后将KEFP-growth算法和投影算法相结合,这样既可以消除无意义的频繁项的挖掘,又可以在大数据量时候又能对数据进行划分。本文还通过实验比较了三种改进算法以及原FP-Tree算法的性能,实验表明采用KEFP-growth算法和数据库投影算法相结合的算法最适合于自适应学习系统的学习者特征的挖掘。本文基于改进的FP-Tree的算法成功地完成了自适应学习学习者特征建立挖掘的相关性研究,也为自适应学习系统的知识发现提供了进一步的研究思路。

论文目录

  • 中文摘要
  • 英文摘要
  • 第1章 引言
  • 1.1 研究背景和问题
  • 1.2 国内外研究现状
  • 1.3 本文的研究目标和工作内容
  • 1.4 论文的结构安排
  • 第2章 数据挖掘与学习者特征模型相关介绍
  • 2.1 数据挖掘综述
  • 2.2 关联规则挖掘基础
  • 2.3 FP-Tree 算法
  • 2.4 学习者特征和学习策略分析
  • 第3章 关联挖掘在学习者特征诊断中的应用和改进
  • 3.1 数据准备
  • 3.2 改进的FP-TREE 算法
  • 第4章 实验结果与分析
  • 4.1 实验环境和实验数据
  • 4.2 原FP-Tree 算法的实验结果分析
  • 4.3 KEFP-GROWTH算法实验结果分析
  • 4.4 投影算法实验结果分析
  • 4.5 结合算法实验结果分析
  • 第5章 总结与展望
  • 5.1 总结
  • 5.2 展望
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].基于FP-Tree的中药饮片频繁路径模式挖掘算法[J]. 时珍国医国药 2017(06)
    • [2].基于Fp-Tree频繁模式的挖掘算法[J]. 电子技术与软件工程 2017(10)
    • [3].在单向FP-tree上挖掘最大频繁项集[J]. 现代计算机(专业版) 2010(01)
    • [4].基于FP-Tree快速挖掘频繁项集[J]. 计算机应用与软件 2010(10)
    • [5].在单向FP-tree上挖掘频繁闭项集[J]. 计算机工程与应用 2008(10)
    • [6].基于FP-Tree的挖掘最大频繁项目集的新算法[J]. 中国科技信息 2012(14)
    • [7].基于FP-tree的最大频繁项集挖掘新算法[J]. 计算技术与自动化 2009(02)
    • [8].基于FP-Tree的反向频繁项集挖掘[J]. 软件学报 2008(02)
    • [9].一种基于排序FP-TREE挖掘最大频繁模式的高效算法[J]. 广东工业大学学报 2009(02)
    • [10].一种基于FP-tree的最大频繁项目集挖掘算法[J]. 现代计算机(专业版) 2009(09)
    • [11].基于FP-tree的最大频繁项目集挖掘算法[J]. 计算机工程与设计 2008(02)
    • [12].一种改进的基于FP-Tree的高效挖掘最大频繁项目集算法[J]. 济南大学学报(自然科学版) 2017(02)
    • [13].一种基于裁剪FP-Tree的频繁项集挖掘算法[J]. 宜春学院学报 2015(12)
    • [14].基于有序FP-tree的最大长度频繁项集挖掘算法[J]. 计算机工程与应用 2012(30)
    • [15].基于邻接矩阵的FP-tree构造算法[J]. 计算机工程与应用 2011(07)
    • [16].基于有序FP-tree的最大频繁项集挖掘算法[J]. 东北师大学报(自然科学版) 2016(02)
    • [17].基于改进FP-tree的最大频繁项目集挖掘算法[J]. 计算机应用 2012(02)
    • [18].基于改进FP-tree的最大频繁项集挖掘算法[J]. 计算机工程与设计 2008(24)
    • [19].基于FP-Tree的共享前缀频繁项集挖掘算法[J]. 计算机工程与应用 2009(27)
    • [20].基于FP-tree危险信号频繁序列的挖掘算法[J]. 荆楚理工学院学报 2010(09)
    • [21].FP-Tree算法在饰品设计中的应用[J]. 重庆科技学院学报(自然科学版) 2014(04)
    • [22].基于FP-tree算法的推荐系统设计与实现[J]. 电子设计工程 2015(02)
    • [23].基于FP-Tree含正负项目的频繁项集挖掘算法[J]. 模式识别与人工智能 2008(02)
    • [24].改进的FP-tree算法在动车组故障诊断中的应用研究[J]. 交通运输系统工程与信息 2013(06)
    • [25].基于FP-tree的中小馆书目数据库主题词数据挖掘[J]. 现代图书情报技术 2010(Z1)
    • [26].FP-tree关联规则算法在推荐系统中的应用[J]. 信息技术 2015(11)
    • [27].关联规则中改进FP-tree的最大频繁模式挖掘算法[J]. 计算机工程与设计 2010(21)
    • [28].转换时间数据流的加权FP-Tree挖掘算法[J]. 江苏大学学报(自然科学版) 2017(03)
    • [29].基于FP-Tree的最大频繁项目集挖掘算法[J]. 软件 2015(12)
    • [30].基于FP-tree的快速挖掘全局最大频繁项集算法[J]. 计算机集成制造系统 2011(07)

    标签:;  ;  ;  ;  ;  

    FP-Tree算法在自适应学习系统学习者特征模型建立中的应用研究
    下载Doc文档

    猜你喜欢