论文摘要
直线度测量是几何量测量领域中最基本、最重要的内容之一。它同时也是平面度、平行度、垂直度、同轴度等几何量测量的基础。气体润滑技术是实现超精密运动基准的主要手段,是超精加工装备、超精检测系统和超精密光机电一体化仪器与装备的关键技术之一。随着超精密仪器装备技术的发展,精度水平进一步提高,对运动基准技术提出了更高的要求,主要体现在超精密、高刚度和大载荷等方面。首先本文在综述了国内、外气体润滑技术的发展历史和研究现状的基础上,对气体静压润滑基本原理进行了概述。将气垫与导轨间气体简化为两平板间气流一维流动,对闭式气浮导轨进行理论分析,推导出其承载能力与刚度表达式。具体设计了带有均压槽的复合节流气浮导轨和传统的小孔节流气浮导轨结构,并应用气体润滑原理进行理论分析。建立了理论模型,分别求解比较两种节流形式下的承载能力、刚度和流量大小,结果显示复合节流导轨的承载能力是小孔节流的1.3倍,刚度是小孔节流的2倍,但流量也达到小孔节流的1.4倍。结合COSMOSFloWorks仿真软件,应用计算流体力学方法,建立了简单的小孔节流和复合节流导轨结构,对理论分析进行了仿真验证,结果显示复合节流能使导轨承载面的压力分布更均匀,气流通过节流孔后一部分进入均压槽,再通过均压槽流入导轨间隙,形成了二次节流。本文将理论分析与仿真密切结合起来,设计了一种复合节流方式以解决直线导轨的高刚度和大载荷同时兼顾的问题。复合节流导轨中外压气体通过供气孔进入浅槽,再通过浅槽侧边与端部流入导轨间隙。由于浅槽与导轨间隙具有同量级的深度和高度,所以气流在槽内与导轨间隙内所受阻抗相匹配,因此产生节流效果,提高了承载力和刚度。