一种基于改进遗传算法的图像分割研究及应用

一种基于改进遗传算法的图像分割研究及应用

论文摘要

图像分割是很多高级图像处理技术(如可视化、图像压缩、医学图像诊断等)的重要基础工作。迄今为止,已经有很多种不同的图像分割方法提出。阈值法因其实现的简单性而成为图像分割领域的一种重要方法。但是对于复杂的实时图像分割问题,阈值法的高耗时性己经成为该方法发展的一个障碍。因此,寻求一种高效的算法来解决基于阈值法的图像分割问题具有重要意义。遗传算法(Standard Genetic Algorithm,简称SGA)作为一种求解问题的高效并行的全局搜索方法,以其固有的鲁棒性、并行性和自适应性,使之非常适用于大规模搜索空间的寻优问题,已广泛应用于许多学科及工程领域。在计算机视觉领域中的应用也日益受到重视,为图像分割提供了一种新而有效的方法。为了自动确定图像分割的最佳阈值,本论文提出了一种基于改进遗传算法的图像分割方法,即利用这种改进遗传算法对二维OTSU图像分割函数进行全局优化,该方法能够根据个体适应度大小和群体的分散程度自动调整遗传控制参数,从而能够在保持群体多样性的同时加快收敛速度,最后得到图像分割的最佳阈值,克服了传统遗传算法的收敛性差、易早熟等问题。在理论分析和仿真数据实验中,与二维OTSU图像分割法和基于基本遗传算法的图像分割法相比,使用该方法得出的阈值范围更加稳定,阈值计算时间有极大的提高,更能满足图像处理的实时性要求。本论文创新点和主要内容归纳如下:1、提出了一种基于改进遗传算法的图像分割方法,优化了解决方案。尤其是自适应的变异算子选择,是考虑了遗传算法的特点,及算法实际运行效率而引入的。实验证明,新的算法对于有噪声干扰的灰度图像有较好的分割质量,同时利用改进方案,与传统的分割方法相比明显提高了运行时间。2、提出了一种改进的OTSU法,在该改进OTSU法中引进了一种新的距离度量,即背景与目标之间的距离,两类间距越大,目标和背景就分得越开,分割效果就越好。在该改进OTSU法中引进了一种新度量内聚性的好坏变量,即背景与目标的平均方差,因此引入两类平均方差概念,用来度量内聚性的好坏,两类平均方差越小,每个类内的像素越均匀,内聚性越好,分割效果就更好。3、提出了一种将改进遗传算法与改进OTSU法相结合的图像分割方法。4、通过仿真实验,该算法能够在保持群体多样性的同时加快收敛速度,阈值计算时间比二维OTSU图像分割法缩短了18 ms(约63%右),比基本遗传算法缩短了大约30%右;提高了算法全局收敛的稳定性,阈值范围稳定在3个像素以内。本论文算法能够快速准确地分割图像,可以应用于各种图像的实时处理与分析,具有较高的实用性。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 课题研究的背景及意义
  • 1.2 国内外研究现状
  • 1.2.1 国外研究现状
  • 1.2.2 国内研究现状
  • 1.3 本论文主要工作
  • 第二章 图像分割原理和方法
  • 2.1 引言
  • 2.2 图像分割的定义
  • 2.3 主要的图像分割方法
  • 2.3.1 串行边界分割技术
  • 2.3.2 串行区域分割技术
  • 2.3.3 并行边界分割技术
  • 2.3.4 并行区域分割技术
  • 2.3.5 结合特定理论工具的分割技术
  • 2.4 最大类间方差(OTSU)算法
  • 2.4.1 OTSU 算法的基本原理
  • 2.4.2 二维 OTSU 分割方法
  • 2.4.3 OTSU 算法的多阈值分割
  • 2.5 图像分割性能评估
  • 2.6 小结
  • 第三章 遗传算法概述
  • 3.1 遗传算法的历史与基本概念
  • 3.2 遗传算法实现过程
  • 3.2.1 编/解码
  • 3.2.2 初始种群的设定
  • 3.2.3 适应度函数的设定
  • 3.2.4 遗传操作
  • 3.2.5 控制参数的设定
  • 3.2.6 遗传算法的终止
  • 3.3 遗传算法的基本步骤
  • 3.4 性能评价
  • 3.5 遗传算法的理论基础
  • 3.5.1 模式定理
  • 3.5.2 遗传算法的积木块假设
  • 3.5.3 遗传算法的欺骗问题
  • 3.5.4 遗传算法的隐含并行性
  • 3.5.5 遗传算法的收敛性
  • 3.6 遗传算法特点以及优点
  • 3.6.1 传统算法的特点
  • 3.6.2 遗传算法的特点以及优点
  • 3.7 遗传算法应用研究
  • 3.7.1 遗传算法的应用范围
  • 3.7.2 遗传算法应用中的关键问题
  • 3.7.3 遗传算法应用于图像分割的研究方向
  • 3.8 小结
  • 第四章 基于遗传算法的图像分割
  • 4.1 引言
  • 4.2 算法实现流程
  • 4.3 实验结果与分析
  • 4.4 小结
  • 第五章 基于改进遗传算法的图像分割
  • 5.1 引言
  • 5.2 改进遗传算法
  • 5.3 改进 OTSU 图像分割法
  • 5.4 改进遗传算法 IGA 及其与改进 OTSU 法的结合应用
  • 5.5 实验
  • 5.6 小结
  • 第六章 总结与展望
  • 6.1 总结
  • 6.2 展望
  • 参考文献
  • 致谢
  • 个人简历、在学期间发表的学术论文及研究成果
  • 相关论文文献

    • [1].遗传算法的一种改进实现[J]. 西华师范大学学报(自然科学版) 2014(04)
    • [2].求解柔性作业车间调度问题的免疫遗传算法[J]. 东北大学学报(自然科学版) 2008(07)
    • [3].基于基本遗传算法的PID参数整定[J]. 萍乡高等专科学校学报 2013(06)
    • [4].遗传算法基本理论的仿真研究[J]. 计算机与现代化 2011(01)
    • [5].遗传算法在物流配送中心选址中的应用[J]. 福建电脑 2010(05)
    • [6].基于遗传算法的物流配送中心选址问题研究[J]. 福建电脑 2009(06)
    • [7].三种遗传算法的改进方法与研究[J]. 计算机光盘软件与应用 2014(07)
    • [8].应用于换热网络优化的混合遗传算法性能研究[J]. 宁波工程学院学报 2014(03)
    • [9].基本遗传算法与电网智能调度[J]. 科技与创新 2019(07)
    • [10].基于种群熵的改进型遗传算法[J]. 软件 2012(02)
    • [11].基于自适应遗传算法的模糊伙伴选择[J]. 天津商务职业学院学报 2016(06)
    • [12].改进的遗传算法在石化企业生产调度中的应用[J]. 信息技术 2010(06)
    • [13].改进算法在长输管道配泵方案中的研究[J]. 化工管理 2013(02)
    • [14].改进的遗传算法在图像模板匹配中的应用[J]. 测绘地理信息 2013(04)
    • [15].一种抑制早熟收敛的改进遗传算法[J]. 山西师范大学学报(自然科学版) 2010(02)
    • [16].遗传算法在求解旅行商问题中的应用[J]. 甘肃水利水电技术 2008(04)
    • [17].一种基于二次变异策略的改进型遗传算法[J]. 计算机工程与应用 2014(13)
    • [18].一种基于遗传算法的影像匹配方法研究[J]. 海洋测绘 2008(01)
    • [19].自适应遗传算法在固态流体流速检测中的应用[J]. 微型机与应用 2012(10)
    • [20].基于遗传算法的人工订单拣选路径优化研究[J]. 物流技术 2012(21)
    • [21].求解串并联系统配置问题的免疫遗传算法[J]. 计算机工程与应用 2010(15)
    • [22].改进型实数编码遗传算法在内弹道优化中的应用[J]. 弹道学报 2009(03)
    • [23].基于改进的遗传算法的天然气管网系统运行优化[J]. 油气田地面工程 2020(01)
    • [24].基于模糊聚类的改进遗传算法[J]. 重庆大学学报 2008(02)
    • [25].基于遗传算法的分类器模型在医疗诊断中的应用[J]. 软件导刊 2008(03)
    • [26].一种基于改进遗传算法的图像分割方法[J]. 计算机应用研究 2009(11)
    • [27].多阶段复合型遗传算法的结构及性能研究[J]. 河北工程大学学报(自然科学版) 2010(02)
    • [28].基于多子人口群协作进化的拦截轨道优化[J]. 飞行力学 2008(03)
    • [29].基本遗传算法遗传策略优化与Java实现[J]. 通化师范学院学报 2011(06)
    • [30].遗传算法在车间作业调度上的应用[J]. 组合机床与自动化加工技术 2008(11)

    标签:;  ;  ;  ;  

    一种基于改进遗传算法的图像分割研究及应用
    下载Doc文档

    猜你喜欢