本文主要研究内容
作者张保柱(2019)在《DNA适体基荧光金属纳米簇对金属离子及生物分子的turn-on检测》一文中研究指出:核酸适配体具有与靶分子高亲和力和高特异性结合的特性,因此被广泛应用于生物和化学传感器的构建。Ag NCs和Cu/Ag NCs由于具有好的光稳定性、低毒性、极好的生物相容性和超小尺寸等优点,被作为荧光探针、光致发光和电致发光材料用于生物标记、生物成像和生物检测。特别是DNA-Ag NCs和DNA-Cu/Ag NCs通过改变碱基序列或寡核苷酸的链长使发射从蓝色到近红外荧光变化的特性,以及Ag+和Cu2+与DNA寡核苷酸的杂环碱基而不是磷酸和糖环选择性地结合,另外,稳定Ag NCs和Cu/Ag NCs的DNA模板容易和识别靶标的核酸适配体结合等特点,引起研究者极大的关注。基于上述思路,我们构建了检测金属离子和生物分子的免标记“turn-on”式的适配体荧光DNA-Ag NCs/Cu Ag NCs探针。DNA模板一般由两部分组成,一部分是位于5’和/或3’端的成核序列,另一部分是位于中间的适配体序列,二者之间还有几个其它连接碱基。通过改变成核序列和连接序列碱基的种类及数目,以及选择最佳适配体优化DNA模板。检测原理为:加靶标之前,荧光较弱的DNA-Ag NCs/Cu Ag NCs位于DNA模板两端,;加入靶标后,靶标与适配体特异性的结合使得适配体的构象发生改变,促使DNA模板两端的DNA-Ag NCs/Cu Ag NCs互相靠近,导致荧光增强,实现了对靶标的检测。论文的主要研究内容和结果如下:(1)荧光DNA-Ag NCs对Pb2+“turn-on”式的检测。设计了三个DNA模板,分别为C-PS2.M、C-T30695和C-AGRO100。其中两端Ag NCs成核序列(富C序列)相同,但中间适配体不同。根据三种DNA-Ag NCs探针对Pb2+的敏感性,选择C-PS2.M-DNA-Ag NCs作为最佳探针。C-PS2.M-DNA-Ag NCs平均粒径约为1nm。C-PS2.M-DNA-Ag NCs对Pb2+检测的线性范围为5-50 nM(R=0.9862),检测限为3.0 nM。该探针成功地应用于铅的标准参考物质和实际水样中Pb2+的检测。(2)荧光DNA-Ag NCs对Hg2+“turn-on”式的检测。依据T-Hg2+-T配位的特点,设计了2个DNA模板,分别为C-Hg2+-Aptamer-1和C-Hg2+-Aptamer-2。C-Hg2+-Aptamer-1适配体为富T并包含少量C的序列,C-Hg2+-Aptamer-2适配体为富T序列,二者两端Ag NCs的成核序列(富C序列)相同。二者都可以对Hg2+进行检测,线性范围均为2-18 nM(R(1)=0.9985,R(2)=0.9972),检测限分别为0.25nM和0.8 nM,前者比后者更灵敏。C-Hg2+-Aptamer-1-Ag NCs的平均粒径约为2 nm。该方法可以检测自来水和湖水中的Hg2+。(3)荧光DNA-Cu/Ag NCs对三磷酸腺苷(Adenosine 3-triphosphate简称ATP)“turn-on”式的检测。根据ATP适配体设计了BT3T3模板,以BT3T3为基础,通过改变连接区碱基个数、种类以及优化成核富C序列进一步设计了8个DNA模板,并合成了相应的Cu/Ag NCs。对ATP检测效果最好的探针为BT5T5-Cu/Ag NCs。BT5T5-Cu/Ag NCs的平均粒径为2 nm左右,加入ATP后,粒径为1-2 nm的百分含量增加,ATP的加入可能使BT5T5-Cu/Ag NCs得到分散。在2-18 mM线性范围内(R=0.9975),ATP检测限为6.983μM,此探针可以检测胎牛血清中的ATP。BT5T5-Cu/Ag NCs对ATP的检测效果比BT5T5-Ag NCs更好。另外,因为腺苷脱氨酶(Adenosine deaminase简称ADA)可以使ATP不可逆地脱去一个氨基而形成肌苷三磷酸(Inosine 3-triphosphate简称ITP),因此利用BT5T5-Cu/Ag NCs/ATP复合体系可以对ADA的活性检测,检测到的最低浓度为5 U/L。根据在ATP检测中选出的DNA模板,改变结合凝血酶的适体序列,但保留两端的成核序列不变,进一步设计了2个DNA模板,研究发现以TBA1模板合成的TBA1-Cu/Ag NCs能够灵敏地和选择性地检测TB。在2-10 U/L的线性范围内,可以检测到TB的最低浓度为2 U/L。另外,利用本检测方法成功地对胎牛血清中的凝血酶进行了检测。(4)Ag+、生物硫醇和乙酰胆碱酯酶(Acetylcholinesterase简称AChE)活性的检测。构建了一个检测Ag+、生物硫醇和AChE活性的免标记荧光传感器,它是基于Ag+与Thiazole Orange(简称TO)/G-四链体复合物中的G-四链体作用,以及生物硫醇和AChE水解硫代乙酰胆碱(Acetylthiocholine chlorid简称ATCh chloride)生成的硫代胆碱(Thiocholine简称TCh)(含巯基,类似于生物硫醇)夺取DNA中的Ag+引起DNA的构象变化导致TO/G-四链体复合物荧光的变化,根据荧光的变化实现对上述物质的检测。设计了三条富G序列DNA,即HTG,C-KIT和C-MYC,经过优化筛选出HTG序列进行检测。结果表明在线性范围0.5-6.0μM(R=0.9978),Ag+的检测限为34 nM;在0.25-4.5μM(R=0.9965)线性范围,Cys的检测限为25nM;在0.05-1.3 U/L,AChE能被检测到的最低浓度为0.05 U/L。检测AChE活性的实验可以用来检测AChE的抑制剂他克林,其IC50值为18.6 nM。另外,此检测体系成功地检测了自来水和湖水中的Ag+。因此,本传感器可以拓展到监测环境和生物样品中的Ag+、生物硫醇和AChE活性,筛选AChE抑制剂,发现新药物,监测和评估有毒农药等。总之,基于适配体荧光DNA-Ag NCs和DNA-Cu/Ag NCs的探针具有操作简单、成本低廉、灵敏度高、选择性好、毒性较低和生物相容性好等优点,因此在环境监测、生物样品检测、生物化学研究、医学诊断和生物分析中具有潜在的应用价值。
Abstract
he suan kuo pei ti ju you yu ba fen zi gao qin he li he gao te yi xing jie ge de te xing ,yin ci bei an fan ying yong yu sheng wu he hua xue chuan gan qi de gou jian 。Ag NCshe Cu/Ag NCsyou yu ju you hao de guang wen ding xing 、di du xing 、ji hao de sheng wu xiang rong xing he chao xiao che cun deng you dian ,bei zuo wei ying guang tan zhen 、guang zhi fa guang he dian zhi fa guang cai liao yong yu sheng wu biao ji 、sheng wu cheng xiang he sheng wu jian ce 。te bie shi DNA-Ag NCshe DNA-Cu/Ag NCstong guo gai bian jian ji xu lie huo gua he gan suan de lian chang shi fa she cong lan se dao jin gong wai ying guang bian hua de te xing ,yi ji Ag+he Cu2+yu DNAgua he gan suan de za huan jian ji er bu shi lin suan he tang huan shua ze xing de jie ge ,ling wai ,wen ding Ag NCshe Cu/Ag NCsde DNAmo ban rong yi he shi bie ba biao de he suan kuo pei ti jie ge deng te dian ,yin qi yan jiu zhe ji da de guan zhu 。ji yu shang shu sai lu ,wo men gou jian le jian ce jin shu li zi he sheng wu fen zi de mian biao ji “turn-on”shi de kuo pei ti ying guang DNA-Ag NCs/Cu Ag NCstan zhen 。DNAmo ban yi ban you liang bu fen zu cheng ,yi bu fen shi wei yu 5’he /huo 3’duan de cheng he xu lie ,ling yi bu fen shi wei yu zhong jian de kuo pei ti xu lie ,er zhe zhi jian hai you ji ge ji ta lian jie jian ji 。tong guo gai bian cheng he xu lie he lian jie xu lie jian ji de chong lei ji shu mu ,yi ji shua ze zui jia kuo pei ti you hua DNAmo ban 。jian ce yuan li wei :jia ba biao zhi qian ,ying guang jiao ruo de DNA-Ag NCs/Cu Ag NCswei yu DNAmo ban liang duan ,;jia ru ba biao hou ,ba biao yu kuo pei ti te yi xing de jie ge shi de kuo pei ti de gou xiang fa sheng gai bian ,cu shi DNAmo ban liang duan de DNA-Ag NCs/Cu Ag NCshu xiang kao jin ,dao zhi ying guang zeng jiang ,shi xian le dui ba biao de jian ce 。lun wen de zhu yao yan jiu nei rong he jie guo ru xia :(1)ying guang DNA-Ag NCsdui Pb2+“turn-on”shi de jian ce 。she ji le san ge DNAmo ban ,fen bie wei C-PS2.M、C-T30695he C-AGRO100。ji zhong liang duan Ag NCscheng he xu lie (fu Cxu lie )xiang tong ,dan zhong jian kuo pei ti bu tong 。gen ju san chong DNA-Ag NCstan zhen dui Pb2+de min gan xing ,shua ze C-PS2.M-DNA-Ag NCszuo wei zui jia tan zhen 。C-PS2.M-DNA-Ag NCsping jun li jing yao wei 1nm。C-PS2.M-DNA-Ag NCsdui Pb2+jian ce de xian xing fan wei wei 5-50 nM(R=0.9862),jian ce xian wei 3.0 nM。gai tan zhen cheng gong de ying yong yu qian de biao zhun can kao wu zhi he shi ji shui yang zhong Pb2+de jian ce 。(2)ying guang DNA-Ag NCsdui Hg2+“turn-on”shi de jian ce 。yi ju T-Hg2+-Tpei wei de te dian ,she ji le 2ge DNAmo ban ,fen bie wei C-Hg2+-Aptamer-1he C-Hg2+-Aptamer-2。C-Hg2+-Aptamer-1kuo pei ti wei fu Tbing bao han shao liang Cde xu lie ,C-Hg2+-Aptamer-2kuo pei ti wei fu Txu lie ,er zhe liang duan Ag NCsde cheng he xu lie (fu Cxu lie )xiang tong 。er zhe dou ke yi dui Hg2+jin hang jian ce ,xian xing fan wei jun wei 2-18 nM(R(1)=0.9985,R(2)=0.9972),jian ce xian fen bie wei 0.25nMhe 0.8 nM,qian zhe bi hou zhe geng ling min 。C-Hg2+-Aptamer-1-Ag NCsde ping jun li jing yao wei 2 nm。gai fang fa ke yi jian ce zi lai shui he hu shui zhong de Hg2+。(3)ying guang DNA-Cu/Ag NCsdui san lin suan xian gan (Adenosine 3-triphosphatejian chen ATP)“turn-on”shi de jian ce 。gen ju ATPkuo pei ti she ji le BT3T3mo ban ,yi BT3T3wei ji chu ,tong guo gai bian lian jie ou jian ji ge shu 、chong lei yi ji you hua cheng he fu Cxu lie jin yi bu she ji le 8ge DNAmo ban ,bing ge cheng le xiang ying de Cu/Ag NCs。dui ATPjian ce xiao guo zui hao de tan zhen wei BT5T5-Cu/Ag NCs。BT5T5-Cu/Ag NCsde ping jun li jing wei 2 nmzuo you ,jia ru ATPhou ,li jing wei 1-2 nmde bai fen han liang zeng jia ,ATPde jia ru ke neng shi BT5T5-Cu/Ag NCsde dao fen san 。zai 2-18 mMxian xing fan wei nei (R=0.9975),ATPjian ce xian wei 6.983μM,ci tan zhen ke yi jian ce tai niu xie qing zhong de ATP。BT5T5-Cu/Ag NCsdui ATPde jian ce xiao guo bi BT5T5-Ag NCsgeng hao 。ling wai ,yin wei xian gan tuo an mei (Adenosine deaminasejian chen ADA)ke yi shi ATPbu ke ni de tuo qu yi ge an ji er xing cheng ji gan san lin suan (Inosine 3-triphosphatejian chen ITP),yin ci li yong BT5T5-Cu/Ag NCs/ATPfu ge ti ji ke yi dui ADAde huo xing jian ce ,jian ce dao de zui di nong du wei 5 U/L。gen ju zai ATPjian ce zhong shua chu de DNAmo ban ,gai bian jie ge ning xie mei de kuo ti xu lie ,dan bao liu liang duan de cheng he xu lie bu bian ,jin yi bu she ji le 2ge DNAmo ban ,yan jiu fa xian yi TBA1mo ban ge cheng de TBA1-Cu/Ag NCsneng gou ling min de he shua ze xing de jian ce TB。zai 2-10 U/Lde xian xing fan wei nei ,ke yi jian ce dao TBde zui di nong du wei 2 U/L。ling wai ,li yong ben jian ce fang fa cheng gong de dui tai niu xie qing zhong de ning xie mei jin hang le jian ce 。(4)Ag+、sheng wu liu chun he yi xian dan jian zhi mei (Acetylcholinesterasejian chen AChE)huo xing de jian ce 。gou jian le yi ge jian ce Ag+、sheng wu liu chun he AChEhuo xing de mian biao ji ying guang chuan gan qi ,ta shi ji yu Ag+yu Thiazole Orange(jian chen TO)/G-si lian ti fu ge wu zhong de G-si lian ti zuo yong ,yi ji sheng wu liu chun he AChEshui jie liu dai yi xian dan jian (Acetylthiocholine chloridjian chen ATCh chloride)sheng cheng de liu dai dan jian (Thiocholinejian chen TCh)(han qiu ji ,lei shi yu sheng wu liu chun )duo qu DNAzhong de Ag+yin qi DNAde gou xiang bian hua dao zhi TO/G-si lian ti fu ge wu ying guang de bian hua ,gen ju ying guang de bian hua shi xian dui shang shu wu zhi de jian ce 。she ji le san tiao fu Gxu lie DNA,ji HTG,C-KIThe C-MYC,jing guo you hua shai shua chu HTGxu lie jin hang jian ce 。jie guo biao ming zai xian xing fan wei 0.5-6.0μM(R=0.9978),Ag+de jian ce xian wei 34 nM;zai 0.25-4.5μM(R=0.9965)xian xing fan wei ,Cysde jian ce xian wei 25nM;zai 0.05-1.3 U/L,AChEneng bei jian ce dao de zui di nong du wei 0.05 U/L。jian ce AChEhuo xing de shi yan ke yi yong lai jian ce AChEde yi zhi ji ta ke lin ,ji IC50zhi wei 18.6 nM。ling wai ,ci jian ce ti ji cheng gong de jian ce le zi lai shui he hu shui zhong de Ag+。yin ci ,ben chuan gan qi ke yi ta zhan dao jian ce huan jing he sheng wu yang pin zhong de Ag+、sheng wu liu chun he AChEhuo xing ,shai shua AChEyi zhi ji ,fa xian xin yao wu ,jian ce he ping gu you du nong yao deng 。zong zhi ,ji yu kuo pei ti ying guang DNA-Ag NCshe DNA-Cu/Ag NCsde tan zhen ju you cao zuo jian chan 、cheng ben di lian 、ling min du gao 、shua ze xing hao 、du xing jiao di he sheng wu xiang rong xing hao deng you dian ,yin ci zai huan jing jian ce 、sheng wu yang pin jian ce 、sheng wu hua xue yan jiu 、yi xue zhen duan he sheng wu fen xi zhong ju you qian zai de ying yong jia zhi 。
论文参考文献
论文详细介绍
论文作者分别是来自山西大学的张保柱,发表于刊物山西大学2019-11-12论文,是一篇关于适配体银纳米簇论文,适配体铜论文,银纳米簇论文,四链体论文,荧光论文,生物分子论文,金属离子论文,山西大学2019-11-12论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自山西大学2019-11-12论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:适配体银纳米簇论文; 适配体铜论文; 银纳米簇论文; 四链体论文; 荧光论文; 生物分子论文; 金属离子论文; 山西大学2019-11-12论文;