论文摘要
抽象对偶系统中映射级数的λ(X)-赋值收敛是分析学中各领域级数收敛的统一形式,对其内在的相互关系和本质属性(及不变性)的研究,是分析学的重要研究内容.在对算子级数乘数收敛研究的基础之上,众多数学家开始对抽象对偶系统中算子级数赋值收敛进行了研究.去掉映射线性的限制条件,近几年,此方向转入对更一般的映射级数的序列赋值收敛进行研究.本文正是在这些研究成果的基础上,主要分析了局部凸拓扑线性空间上映射级数赋值收敛及其不变性.着重给出了映射级数序列赋值收敛的最强本性意义,然后又对赋值收敛的不变性的一系列重要结论作了改进.此外,还研究了抽象对偶系统中映射级数的l (X)∞-赋值收敛不变性的最强拓扑的应用价值,并明确指出l (X)∞-赋值收敛的最大不变范围.最后,本章定义了序列对偶空间[ (l (X)∞-l X)]βY∞,并给出了[l (X)]βY∞中点列在l (X)上逐点收敛的最强内涵.其次,对于局部凸空间上向量序列空间, M[ (代表本性有界集族,利用Antosik-Mikusinski基本矩阵定理及M[ ( ,对{ :l∞(X)l∞X)]l∞X)]f∈Y Xf (0)= 0}中的映射矩阵本文获得了一系列矩阵变换定理,给出了矩阵族的刻划.
论文目录
相关论文文献
- [1].关于发散的p-级数的一个发散速度估计[J]. 高等数学研究 2017(01)
- [2].由一级数引出的若干新的组合恒等式[J]. 高等数学研究 2017(03)
- [3].高低压配电级数及选择性探讨[J]. 智能建筑电气技术 2015(04)
- [4].级数的相关性质与应用[J]. 数学学习与研究 2011(03)
- [5].电扶梯的级数[J]. 小星星(低年级版) 2010(12)
- [6].正项级数审敛法的推广[J]. 高师理科学刊 2019(12)
- [7].晋级数独 挑战财智巅峰[J]. 资本市场 2013(01)
- [8].晋级数独挑战财智巅峰[J]. 资本市场 2013(02)
- [9].晋级数独 挑战财智巅峰[J]. 资本市场 2013(03)
- [10].晋级数独 挑战财智巅峰[J]. 资本市场 2013(04)
- [11].晋级数独 挑战财智巅峰[J]. 资本市场 2013(05)
- [12].晋级数独 挑战财智巅峰[J]. 资本市场 2013(06)
- [13].晋级数独 挑战财智巅峰[J]. 资本市场 2013(07)
- [14].晋级数独 挑战财智巅峰[J]. 资本市场 2012(01)
- [15].晋级数独 挑战财智巅峰[J]. 资本市场 2012(02)
- [16].晋级数独 挑战财智巅峰[J]. 资本市场 2012(03)
- [17].晋级数独 挑战财智巅峰[J]. 资本市场 2012(05)
- [18].晋级数独 挑战财智巅峰[J]. 资本市场 2012(06)
- [19].晋级数独 挑战财智巅峰[J]. 资本市场 2012(07)
- [20].晋级数独 挑战财智巅峰[J]. 资本市场 2012(08)
- [21].晋级数独 挑战财智巅峰[J]. 资本市场 2012(09)
- [22].晋级数独 挑战财智巅峰[J]. 资本市场 2012(11)
- [23].晋级数独 挑战财智巅峰[J]. 资本市场 2012(12)
- [24].晋级数独 挑战财智巅峰[J]. 资本市场 2011(01)
- [25].晋级数独 挑战财智巅峰[J]. 资本市场 2011(02)
- [26].晋级数独 挑战财智巅峰[J]. 资本市场 2011(03)
- [27].一个q-级数不等式[J]. 淮阴师范学院学报(自然科学版) 2011(01)
- [28].晋级数独 挑战财智巅峰[J]. 资本市场 2011(04)
- [29].晋级数独 挑战财智巅峰[J]. 资本市场 2011(05)
- [30].晋级数独 挑战财智巅峰[J]. 资本市场 2011(06)