Ni-Mo-W本体催化剂的制备、表征与加氢脱硫性能研究

Ni-Mo-W本体催化剂的制备、表征与加氢脱硫性能研究

论文摘要

环境法规对柴油中硫和芳烃含量的规定越来越严格,满足这一要求的最为经济和有效的手段就是使用具有高加氢活性的催化剂。常规的负载型加氢催化剂由于受到载体上活性组分负载量的限制,活性很难大幅度的提高,无法满足生产超低硫、低氮和低芳烃油品的要求。本论文开发出了一种新型的本体型柴油加氢精制催化剂的制备方法。该方法采用与目前国内外现有技术不同的技术路线,即以钼酸铵、偏钨酸铵和硝酸镍为原料,引入分散介质SiO2或者硅藻土,采用沉积沉淀法制备Ni-Mo(-W)本体型催化剂。此技术制备的催化剂具有较高的比表面积及介孔孔径分布,且Ni、Mo、W等活性组分分散均匀。另外,沉积沉淀法还使得活性组分分布在分散介质的表面,进一步地提高了活性组分的利用率,而且催化剂中活性金属含量可以通过改变原料与分散介质的配比而任意调节,以达到最优的性价比。以SiO2为分散介质制备的本体型催化剂具有较高的比表面和孔容。XRD表征显示,无分散介质的Ni-Mo-W催化剂具有微晶结构,而Ni-Mo-W/SiO2催化剂则是无定型结构,TEM表征进一步证实了Ni-Mo-W/SiO2中Ni-Mo-W复合物颗粒呈纳米分散;而双组分Ni-Mo/SiO2本体型催化剂上呈现均匀分散的钼酸镍纳米颗粒,这些都证明SiO2能够高度地分散活性组分。DBT的加氢脱硫实验表明,Ni-Mo-W/SiO2和Ni-Mo/SiO2的加氢脱硫活性远高于参比催化剂以及常规的Ni-Mo/Al2O3负载型催化剂。以硅藻土为分散介质,采用沉积沉淀法制备的Ni-Mo-W催化剂的比表面和孔容比纯的Ni-Mo-W催化剂有很大的提高,表明硅藻土能够有效地分散金属活性组分,而且Ni-Mo-W/硅藻土催化剂的强度有所提高,说明硅藻土还有一定的粘结作用。对Ni-Mo-W/硅藻土本体型催化剂的制备条件进行了详细的考察,确定了最佳的制备条件。研究表明Ni-Mo-W复合物具有层状结构,其主体层板主要由Ni和W两种元素组成,Mo处于板层中间位置。硫化态Ni-Mo-W/硅藻土本体型催化剂XRD谱图中出现了的(002)晶面衍射峰,表明MoS2或WS2沿c-轴方向堆积层数较高,活性组分主要以催化活性较高的Ⅱ型Ni-Mo(W)-S活性相形式存在。催化剂中镍的含量对其催化性能有很大的影响,原因是首先镍的硫化物能支撑、分散MoS2或WS2,起到了“载体”的作用;其次,镍还能控制MoS2或WS2活性组分的形态,暴露更多的边、角、棱位,从而提高催化剂的催化活性。以模型化合物(二苯并噻吩、喹啉、联苯)和FCC柴油为评价对象,对所制备的Ni-Mo-W/硅藻土本体型催化剂进行活性评价,并与工业化负载型催化剂进行了对比。同时还采用GC-PFPD方法对柴油及加氢后油样中的含硫化合物进行了定性及定量分析,以研究其在不同催化剂上转化脱除规律。实验结果表明,Ni-Mo-W/硅藻土本体型催化剂具有优异的加氢脱硫、脱氮和脱芳活性。催化剂的吡啶吸附红外光谱图显示,参比催化剂表面既有B酸中心又有L酸中心,而Ni-Mo-W/硅藻土本体型催化剂表面只有L酸中心,说明两种催化剂中MoS2或WS2堆积层数不同及其弯曲的形态可能是造成这种现象的主要原因。Ni-Mo-W/硅藻土本体型催化剂较高的MoS2或WS2堆积层数,活性组分主要以Ⅱ型Ni-Mo(W)-S活性相形式存在;而MoS2或WS2弯曲的形态则能暴露更多的活性位,这些都使得本体型硫化物催化剂具有很高的加氢活性。Ni-Mo-W/硅藻土本体型催化剂对FCC柴油的加氢脱硫率、脱氮率明显高于参比负载型催化剂。柴油加氢脱硫过程是优先脱除苯并噻吩及其衍生物,其次是二苯并噻吩,加氢后油样中残留的硫化物主要为带有取代基的二苯并噻吩类化合物。对二苯并噻吩及其烷基取代的衍生物而言,由于其空间位阻很大,主要依靠加氢路径将其脱除,而Ni-Mo-W/硅藻土本体型催化剂比参比催化剂具有更强的加氢能力,从而导致Ni-Mo-W/硅藻土本体型催化剂对二苯并噻吩及其烷基取代的衍生物具有更强的脱除能力。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 引言
  • 1.2 柴油加氢脱硫催化剂的研究进展
  • 1.2.1 负载型加氢脱硫催化剂的研究进展
  • 1.2.2 本体型加氢脱硫催化剂的研究进展
  • 1.3 加氢催化剂活性相的结构模型
  • 1.3.1 单分子层模型
  • 1.3.2 嵌入模型
  • 1.3.3 遥控模型
  • 1.3.4 Co-Mo-S 相模型
  • 1.3.5 Rim-edge 模型
  • 1.3.6 活性相研究新进展
  • 1.4 本论文的研究目的及主要任务
  • 2本体型催化剂'>第二章 沉积沉淀法制备Ni-Mo(-W)/Si02本体型催化剂
  • 2.1 前言
  • 2.2 实验部分
  • 2.2.1 药品与试剂
  • 2.2.2 催化剂的制备
  • 2.2.3 仪器与表征
  • 2.2.4 活性评价
  • 2.3 结果与讨论
  • 2 本体型催化剂'>2.3.1 三组分Ni-Mo-W/Si02本体型催化剂
  • 2 本体型催化剂'>2.3.2 双组分Ni-Mo/Si02本体型催化剂
  • 2.3.3 催化剂的加氢脱硫活性评价
  • 2.4 本章小结
  • 第三章 沉积沉淀法制备Ni-Mo(-W)/硅藻土本体型催化剂
  • 3.1 前言
  • 3.2 实验部分
  • 3.2.1 实验药品
  • 3.2.2 催化剂的制备
  • 3.2.3 仪器与表征
  • 3.2.4 催化剂的成型
  • 3.2.5 压碎强度测试
  • 3.2.6 活性评价
  • 3.3 结果与讨论
  • 3.3.1 沉积沉淀法制备Ni-Mo-W/硅藻土本体催化剂
  • 3.3.2 Ni-Mo-W/硅藻土本体催化剂的制备条件考察
  • 3.3.3 Ni-Mo-W 复合物的结构分析
  • 3.4 本章小结
  • 第四章 Ni-Mo-W/硅藻土本体型催化剂的加氢反应性能研究
  • 4.1 前言
  • 4.2 实验部分
  • 4.2.1 实验药品
  • 4.2.2 催化剂制备
  • 4.2.3 仪器与表征
  • 4.2.4 催化剂的成型
  • 4.2.5 活性评价
  • 4.2.6 产物分析
  • 4.3 结果与讨论
  • 4.3.1 催化剂的BET 分析结果
  • 4.3.2 催化剂的XRD 分析结果
  • 4.3.3 催化剂的HRTEM 分析结果
  • 4.3.4 催化剂对二苯并噻吩的HDS 性能
  • 4.3.5 催化剂对喹啉的HDN 性能
  • 4.3.6 催化剂对联苯的HDAr 性能
  • 4.4 本章小结
  • 第五章 Ni-Mo-W/硅藻土本体型催化剂对FCC 柴油的加氢性能研究
  • 5.1 前言
  • 5.2 实验部分
  • 5.2.1 实验药品
  • 5.2.2 Ni-Mo-W/硅藻土本体催化剂的制备
  • 5.2.3 催化剂的成型
  • 5.2.4 参比催化剂
  • 5.2.5 活性评价
  • 5.3 结果与讨论
  • 5.3.1 催化剂对FCC 柴油的加氢性能
  • 5.3.2 柴油中硫化物在不同催化剂上的脱除规律
  • 5.4 本章小结
  • 结论
  • 参考文献
  • 攻读博士学位期间取得的研究成果
  • 致谢
  • 作者简介
  • 相关论文文献

    • [1].电感耦合等离子体发射光谱法测定钌炭催化剂中的钌[J]. 能源化工 2019(05)
    • [2].山西煤化所燃料电池催化剂设计研究取得进展[J]. 化工新型材料 2019(11)
    • [3].介孔催化剂用于合成气制低碳醇的研究进展[J]. 当代化工研究 2020(03)
    • [4].Y改性对V_2O_5-MoO_3/TiO_2催化剂脱硝性能的影响[J]. 现代化工 2020(03)
    • [5].一种制备稀土顺丁橡胶的催化剂的制备方法[J]. 橡胶科技 2020(03)
    • [6].钇掺杂钌催化剂的制备及其催化对硝基甲苯加氢制对甲基环己胺[J]. 精细石油化工 2020(02)
    • [7].新型孔雀石型1,4-丁炔二醇催化剂的开发[J]. 辽宁化工 2020(04)
    • [8].蜂窝式催化剂与平板式催化剂的运行现状分析[J]. 清洗世界 2020(04)
    • [9].高铼酸铵热分解及其在银催化剂中的应用研究[J]. 齐鲁工业大学学报 2019(03)
    • [10].介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报 2020(05)
    • [11].低变催化剂运行末期对装置的影响[J]. 化工设计通讯 2020(03)
    • [12].乙烷驯化对银催化剂的性能影响研究[J]. 广东化工 2020(08)
    • [13].规整催化剂数值模拟的研究进展[J]. 化工技术与开发 2020(04)
    • [14].两种铬系催化剂的制备及催化乙烯聚合性能研究[J]. 精细化工中间体 2020(02)
    • [15].全密度聚乙烯干粉催化剂的控制及优化[J]. 中国仪器仪表 2020(06)
    • [16].车用催化剂的研究进展及产业现状[J]. 浙江冶金 2020(Z1)
    • [17].有机化学反应中非金属有机催化剂的应用研究[J]. 化工管理 2020(18)
    • [18].甲醇制丙烯催化剂侧线装置性能评价[J]. 现代化工 2020(06)
    • [19].干燥过程对催化剂物化性质的影响[J]. 辽宁化工 2020(06)
    • [20].甲烷化反应器催化剂积炭过程的模拟研究[J]. 高校化学工程学报 2020(03)
    • [21].钴基费托合成催化剂硫中毒热力学分析[J]. 化学工程 2020(07)
    • [22].合成气制二甲醚中残留钠对催化剂的影响[J]. 天然气化工(C1化学与化工) 2020(04)
    • [23].费托合成钴基催化剂助剂研究进展[J]. 现代化工 2020(09)
    • [24].二氧化硫氧化制硫酸用钒催化剂的研究进展[J]. 广州化工 2020(14)
    • [25].催化裂化外取热器入口区域催化剂分布及优化[J]. 过程工程学报 2020(09)
    • [26].Mn-Ce-Pr/Al_2O_3臭氧催化剂的制备及其性能研究[J]. 功能材料 2020(09)
    • [27].钒催化剂在硫酸生产中的应用[J]. 广东化工 2020(17)
    • [28].中低温煤焦油加氢反应中催化剂的开发与研究[J]. 化学工程师 2020(09)
    • [29].乙炔氢氯化钌基催化剂的研究与进展[J]. 中国氯碱 2020(10)
    • [30].Cu-xZrO_2/SiO_2改性催化剂对醋酸甲酯制乙醇性能的影响[J]. 天然气化工(C1化学与化工) 2020(05)

    标签:;  ;  ;  

    Ni-Mo-W本体催化剂的制备、表征与加氢脱硫性能研究
    下载Doc文档

    猜你喜欢