利用微分从属定义的几类解析函数的性质

利用微分从属定义的几类解析函数的性质

论文摘要

在第一章中,作者引入了一个新的解析函数类B1(α,λ,A,B).用Briot-Bouquet微分从属的方法,讨论了此函数类的从属关系、包含关系及属于此函数类或子类的某些充分条件.第二章研究了正规化解析函数类H的子类B(α,λ,ρ)的Fekete-Szego不等式,对于任意的f(z)=z+a2z2+a3z3+…∈B(α,λ,ρ)及任意的复参数μ,应用解析函数的基本不等式和分析技巧,得到了|a3-μa22|的精确上界,所得结果推广了一些作者的相关结果.在第三章中,我们引入了一个解析函数的子类M1(α,λ,ρ).讨论了他们的从属关系、包含关系、系数估计、和偏差定理.进一步得到了此函数类或子类的一些有趣的Fekete-Szego不等式,其中一些结果推广了一些作者的相关结果.

论文目录

  • 摘要
  • Abstract
  • 前言
  • 第一章 某类利用微分从属定义的解析函数的性质
  • 1.1 引言
  • 1.2 引理
  • 1(α,λ,A,B)的性质'>1.3 函数类B1(α,λ,A,B)的性质
  • 第二章 一类解析函数类的Fekete-Szego不等式
  • 2.1 引言与结果
  • 2.2 定理的证明
  • 第三章 关于Bazilevic|ˇ函数类的一个子类
  • 3.1 引言与引理
  • 3.2 主要结果及其证明
  • 参考文献
  • 致谢
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    利用微分从属定义的几类解析函数的性质
    下载Doc文档

    猜你喜欢