论文摘要
多孔介质燃烧器由于其高的燃烧效率和较低的污染物排放越来越多地受到人们的青睐。此外,它还有如下优点:可供选择的燃料范围广,可以在较低的当量比条件下工作,调节比大等。本论文对惰性多孔介质内的预混气体的燃烧规律进行了探索性的实验研究,主要是考查了多孔介质内预混火焰的稳定性,污染物排放和温度分布的情况,并探索了在多孔介质内实现低热值气体稳定燃烧的方法。实验结果发现:小孔泡沫陶瓷作预热段,大孔泡沫陶瓷作燃烧段,可以实现液化天然气和空气的预混气体的稳定燃烧,也可以实现氮气稀释过的上述预混气体的稳定燃烧,从而证实了在泡沫陶瓷体内实现低热值气体的稳定燃烧的可行性:小孔泡沫陶瓷作预热段,金属纤维作燃烧段,可以实现预混气体在金属纤维毡表面附近的稳定燃烧,只是稳定燃烧时的工况要求比较苛刻。液化天然气和空气的预混气体在泡沫陶瓷内稳定燃烧时,火焰稳定在大孔陶瓷与小孔陶瓷交界面附近,燃烧区内温度分布比较均匀;污染物的排放量很低,CO的含量低于30ppm,NOX的含量低于10ppm;用氮气稀释过的预混气体在多孔陶瓷体内稳定燃烧时,可以得出相同的结论,NOx的含量在10ppm左右,而CO的含量偏高,但仍低于100ppm。为了进一步指导后续实验的进行和提高多孔介质燃烧器的性能,本论文建立了预混气体在多孔介质内燃烧的二维稳态数学模型,用商业软件Fluent计算了燃烧稳定情况下的流场、温度场和浓度场分布,并考查了多孔介质物性参数对温度场的影响。数值模拟的结果显示:多孔介质燃烧器内的流场、温度场和浓度场分布呈现一维结构;火焰稳定在大孔陶瓷与小孔陶瓷交界面附近,这与实验的结果吻合,但火焰温度明显偏高;与传统燃烧器相比,多孔介质燃烧器的化学反应区域变宽,火焰面附近气体温度梯度变小。数值模拟的结果又表明:多孔介质的导热系数、辐射衰减系数和体积对流换热系数,对多孔介质内气相和固相温度分布的影响较大。计算结果显示,为了使燃烧更加稳定、安全和充分,小孔介质应具有适中的导热系数,较大的辐射衰减系数和较高的体积对流换热系数;大孔介质应具有较高的导热系数,较小的辐射衰减系数和适中的体积对流换热系数。