论文题目: 面向统计过程控制的成分提取技术研究与应用
论文类型: 博士论文
论文专业: 机械电子工程
作者: 郭振华
导师: 熊有伦,丁汉
关键词: 成分提取,主成分分析,独立成分分析,统计过程控制,神经网络
文献来源: 华中科技大学
发表年度: 2005
论文摘要: 统计过程控制(SPC)借助统计成分提取技术监测生产过程的稳定性,是先进制造系统的重要组成部分,也是先进质量控制的重要工具。成分提取技术是一类研究多变量数据内部统计规律,揭示数据内在低维本质信息的统计分析技术,更是统计过程控制的关键支撑技术。本文以统计过程控制为应用背景,深入研究了以二阶统计量方差和高阶统计量为算法性能指标的主成分和独立成分提取技术,并应用于化工过程和半导体封装过程的监控、故障诊断和系统降维等方面。论文首先分析了在高斯分布下经典主成分分析(MSE-PCA)建立的主成分模型具有最小均方误差和最小残差熵性质。熵是比方差更通用的系统不确定性度量,最大熵原理要求系统主成分模型应该具有最小残差熵,但MSE-PCA对非高斯数据所建立的主成分模型不具有最小残差熵。依据最大熵原理,论文提出了一种主成分模型具有最小残差熵的改进型主成分提取方法(MEE-PCA)。MEE-PCA先以MSE-PCA确定基本主成分模型,再利用遗传算法优化所保留的主特征向量,使得主成分模型的残差熵最小。并以多变量四水箱过程为实例,描述了MEE-PCA在统计过程监控及故障诊断中的应用,验证了MEE-PCA方法比MSE-PCA的优越性。依据随机逼近理论和Hebb学习规则,论文深入分析了以神经网络实现主成分提取的算法,论述了具有更强非线性数据降维能力的非线性主成神经网络算法。结合自关联线性主成分提取神经网络(MSE-PCNN)和非线性主成分提取思想,提出一种以最小残差熵为指标的自关联非线性主成分提取神经网络(MEE-PCNN),给出基于Parzen窗口密度函数估计的微分熵近似计算方法。基于信息最大化(Infomax)原理,论证了MSE-PCNN方法和MEE-PCNN方法在高斯分布情况下的等价性。以四水箱过程为实例,对比分析了经典PCA和非线性主成分神经网络的降维能力。用非高斯数据仿真验证了MEE-PCNN方法能有效地进行非高斯数据降维和信号盲源提取。针对独立非高斯性信号混和数据的压缩降维与盲源提取问题,总结了几种基于最大非高斯性或信息熵度量指标的独立成分分析(ICA)算法,论证了最大似然估计ICA算法、最大负熵ICA算法和最小互信息ICA算法之间的等价性。结合非线性主成分提取网络的降维思想和信息最大化(Infomax)原则,论文提出一种以Renyi熵最大化作为指标的主独立成分提取网络(PICNN)算法,用于同时对非高斯混和数据降维压缩和独立成分提取。以田纳西-伊斯曼过程为应用实例,验证了ICA算法在过程故障检测和诊断中应用的优越性。用非高斯数据仿真分析了PICNN算法在信号降维和盲信号重构中应用的有效性。统计成分提取技术常被用于基于知识或信号的数值分析类故障诊断方法中,却难以被用于基于模型的数学解析类故障诊断方法中。论文提出一种高维随机动态系统降维和基于观测器的故障诊断算法。该算法首先用成分提取技术对高维解析模型降维逼近,然后设计状态观察器,通过选择适当的自适应调节规律,保证所选择的李亚普诺夫函数能单调递
论文目录:
摘要
Abstract
1 绪言
1.1 课题概述
1.2 成分分析基本原理
1.3 相关文献综述
1.4 论文主要研究工作
1.5 论文结构安排
1.6 主要缩略和数学符号约定
2 成分提取技术相关理论基础
2.1 统计理论基础
2.2 熵、互信息和负熵
2.3 随机逼近定理
2.4 随机梯度和自然梯度
2.5 小结
3 最小残差熵主成分提取及统计过程控制应用
3.1 引言
3.2 总体主成分分析数学描述
3.3 最小残差熵成分提取理论依据
3.4 最小残差熵主成分模型与统计控制量
3.5 最小残差熵优化算法方法
3.6 多变量四水箱过程监控应用
3.7 结论
4 主成分提取神经网络及其统计过程控制应用
4.1 引言
4.2 线性主成分提取神经网络算法
4.3 非线性主成分提取神经网络算法
4.4 最小残差熵主成分提取神经网络
4.5 仿真研究
4.6 小结
5 独立成分提取算法及过程监控应用
5.1 引言
5.2 独立成分提取的基本模型
5.3 独立性度量准则
5.4 独立成分提取算法
5.5 基于Renyi熵最大化的主独立成分提取算法
5.6 ICA应用于田纳西-伊斯曼过程的故障诊断
5.7 主独立成分提取算法盲源分离应用
5.8 小结
6 高维动态系统降维及基于观测器的故障诊断
6.1 引言
6.2 高维动态系统描述
6.3 主成分降维神经网络及学习指标
6.4 降维神经网络学习算法
6.5 基于自适应观察器的故障诊断算法
6.6 仿真实验
6.7 小结
7 基于成分提取的半导体封装点胶过程监测
7.1 引言
7.2 点胶系统机械装备和软硬件
7.3 点胶过程监测和故障诊断
7.4 总结
8 总结与展望
8.1 论文研究工作总结
8.2 进一步的研究内容
致谢
参考文献
附录1 攻读学位期间发表的主要论文
发布时间: 2006-04-05
参考文献
- [1].基于支持向量机的自动加工过程质量控制方法研究[D]. 朱波.重庆大学2013
- [2].智能工序质量控制的理论与方法研究[D]. 乐清洪.西北工业大学2002
- [3].图像数据统计过程控制方法研究[D]. 左玲.天津大学2016
相关论文
- [1].面向质量目标的统计过程控制方法与应用研究[D]. 房纪涛.上海大学2010
- [2].基于数据驱动的流程工业性能监控与故障诊断研究[D]. 郭明.浙江大学2004
- [3].工业过程监控:基于主元分析和盲源信号分析方法[D]. 陈国金.浙江大学2004
- [4].基于ICA-PCA方法的流程工业过程监控与故障诊断研究[D]. 何宁.浙江大学2004
- [5].铸造生产中应用多变量统计过程控制的研究[D]. 李斌锋.清华大学2004
- [6].多元统计过程监控若干问题研究[D]. 赵仕健.清华大学2005
- [7].动态过程数据的多变量统计监控方法研究[D]. 刘育明.浙江大学2006
- [8].自相关过程的统计过程控制方法研究[D]. 张敏.天津大学2006
- [9].基于PCA的统计过程监控研究[D]. 李荣雨.浙江大学2007
- [10].基于统计学方法的过程监控与质量控制研究[D]. 赵旭.上海交通大学2006