汉英表量结构中异常搭配的隐喻构建与解读机制

汉英表量结构中异常搭配的隐喻构建与解读机制

论文摘要

尽管汉语属量词标记型语言,而英语则属单复数标记型语言,但表量结构这一语言现象却为这两种语言所共有,用于对名词所代表的事物进行度量。随着人类物质生活的日益发达和精神生活的日益丰富,出现了越来越多灵活多变的名量之间的异常搭配,即在特定的情况下,人们故意违反名量之间的常规语义搭配规则,为达到一定的语用目的而使用的隐喻性名量搭配。本文借用隐喻理论中的相关研究成果为理论支撑,拟探讨英汉表量结构中异常搭配背后的隐喻构建机制和解读机制。本文的研究将有助于促进量词研究及英汉语言对比研究的发展。全文共分七章。第一章主要介绍本文的研究背景、目的和意义,以及文章的组织结构。第二章为文献综述,介绍表量结构的研究现状以及研究表量结构异常搭配的所需的相关理论。第三章根据异常搭配表量结构中量词词性的来源对其进行分类。第四章以表量结构中名量之间的隐喻性搭配关系为基础,借用映射关系图式和概念整合图式分析名量异常搭配的隐喻构建机制及其相应的解读机制。第五章探讨表量结构中名量异常搭配的主要语用功能。第六章分析表量结构中名量异常搭配的主要认知理据。第七章为结论。通过分析探讨,我们得出以下结论:首先,在异常搭配的表量结构中,量词的使用表达了使用者对名词的认知过程,名量之间的隐喻性搭配关系所反映的是人们对名词所代表的范畴的理解和认识,是两个意象之间的映射关系。其次,不管是量词标记型的汉语系统还是单复数标记型的英语体系,其中的表量结构名量之间的异常搭配关系遵循着同样的认知模式,即静态意象模式(其中包括显性和隐性两种意象模式)和动态意象模式(其中包括主动和被动两种意象模式);同时也遵循着同样的认知规律,即事物的属性不是选用量词进行分类的唯一标准,而更多的是事物与事物之间的关系。对于量词的选择是由两个语言成分(名词和量词)所指之间的关系本质所决定的。

论文目录

  • 摘要
  • Abstract
  • 1 Introduction
  • 2 Literature Review
  • 2.1 Classifier Structures
  • 2.2 The Metaphorical Concept
  • 2.3 The Image Schema and the Mapping Theory
  • 2.4 The Categorization Theory and the Conceptual Blending Theory
  • 2.5 The Construal Theory
  • 3 Classification of Classifiers in Anomalous Classifier Structures
  • 3.1 Anomalous Classifier Structures
  • 3.2 Classification of Classifiers in Anomalous Classifier Structures
  • 3.2.1 Metrical Classifiers
  • 3.2.2 Nominal Classifiers
  • 3.2.3 Verbal Classifiers
  • 4 Metaphorical Mechanisms in Anomalous Classifier Structures
  • 4.1 Static Image Mode of Anomalous Classifier Structures
  • 4.1.1 Explicit Image Mode of Anomalous Classifier Structures
  • 4.1.2 Implicit Image Mode of Anomalous Classifier Structures
  • 4.2 Dynamic Image Mode of Anomalous Classifier Structures
  • 4.2.1 Active Image Mode of Anomalous Classifier Structures
  • 4.2.2 Passive Image Mode of Anomalous Classifier Structures
  • 5 Pragmatic Functions of Anomalous Classifier Structures
  • 5.1 To Transfer Physical Features
  • 5.2 To Transfer Inner Qualities
  • 5.3 To Transfer Particular Emotions
  • 6 Bases of Anomalous Classifier Structures
  • 6.1 The Multi-Perspective Basis
  • 6.2 The Economical Principle of Language
  • 6.3 The Psychological Bases
  • 7 Conclusion
  • Bibliography
  • Academic Achievements
  • Acknowledgements
  • 相关论文文献

    • [1].Construction of unsupervised sentiment classifier on idioms resources[J]. Journal of Central South University 2014(04)
    • [2].Improving naive Bayes classifier by dividing its decision regions[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2011(08)
    • [3].A multi-class large margin classifier[J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) 2009(02)
    • [4].Study on the classification of multi-spectral images based on a FSVM multi-class classifier with the binary tree[J]. Optoelectronics Letters 2010(01)
    • [5].Tracking performance of large margin classifier in automatic modulation classification with a software radio environment[J]. Journal of Systems Engineering and Electronics 2014(05)
    • [6].Evolving Neural Network Using Variable String Genetic Algorithm for Color Infrared Aerial Image Classification[J]. Chinese Geographical Science 2008(02)
    • [7].Research on Remote Sensing Image of Land Cover Classification Based on Multiple Classifier Combination[J]. Wuhan University Journal of Natural Sciences 2011(04)
    • [8].CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION[J]. Journal of Electronics(China) 2009(06)
    • [9].Support vector classifier based on principal component analysis[J]. Journal of Systems Engineering and Electronics 2008(01)
    • [10].Data classification from the inverse n~(th) power gravitation[J]. Science China(Information Sciences) 2012(01)
    • [11].Multiscale classification and its application to process monitoring[J]. Journal of Zhejiang University-Science C(Computer & Electronics) 2010(06)
    • [12].Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis[J]. Journal of Central South University 2012(02)
    • [13].Empirical Study of Classification Process for Two-stage Turbo Air Classifier in Series[J]. Chinese Journal of Mechanical Engineering 2013(03)
    • [14].A deep learning approach to the classification of 3D CAD models[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2014(02)
    • [15].RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD[J]. Journal of Electronics(China) 2009(03)
    • [16].A novel methodology for finding the regulation on gene expression data[J]. Progress in Natural Science 2009(02)
    • [17].用于提高谷歌图像搜索结果的二分类器在线学习方法(英文)[J]. 自动化学报 2014(08)
    • [18].Common Spatial Pattern Ensemble Classifier and Its Application in Brain-Computer Interface[J]. Journal of Electronic Science and Technology of China 2009(01)
    • [19].Shape classification based on singular value decomposition transform[J]. 重庆邮电大学学报(自然科学版) 2009(02)
    • [20].TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION[J]. Journal of Electronics(China) 2009(03)
    • [21].Multi-Fault Diagnosis for Autonomous Underwater Vehicle Based on Fuzzy Weighted Support Vector Domain Description[J]. China Ocean Engineering 2014(05)
    • [22].Development and application of triage and evacuation equipment for casualties at sea[J]. Military Medical Research 2014(01)
    • [23].Automatic Product Image Classification with Multiple Support Vector Machine Classifiers[J]. Journal of Shanghai Jiaotong University(Science) 2011(04)
    • [24].Predicting potential cancer genes by integrating network properties,sequence features and functional annotations[J]. Science China(Life Sciences) 2013(08)
    • [25].Multi-Domain Sentiment Classification with Classifier Combination[J]. Journal of Computer Science & Technology 2011(01)
    • [26].Fusion and Classification of Beijing-1 Small Satellite Remote Sensing Image for Land Cover Monitoring in Mining Area[J]. Chinese Geographical Science 2011(06)
    • [27].基于贝叶斯最优分类器的多源模糊信息融合方法(英文)[J]. 自动化学报 2008(03)
    • [28].Automatic Red Tide Algae Recognition[J]. Chinese Journal of Biomedical Engineering 2010(01)
    • [29].COMBINING CLASSIFIERS FOR CREDIT RISK PREDICTION[J]. Journal of Systems Science and Systems Engineering 2009(03)
    • [30].Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects[J]. Journal of Iron and Steel Research(International) 2014(02)

    标签:;  ;  ;  ;  ;  

    汉英表量结构中异常搭配的隐喻构建与解读机制
    下载Doc文档

    猜你喜欢