计量经济模型中非参数M估计的渐近理论

计量经济模型中非参数M估计的渐近理论

论文摘要

在过去的几十年中,越来越多的研究者用非参数方法来对统计模型中的回归函数进行估计。很多估计方法以及估计量都已经被提出并得到了发展,如核估计,样条估计,局部回归估计以及正交序列估计方法等。非参数估计的理论以及实际应用都已经得到了系统的研究。至今,非参数估计仍然是统计中的一个热门与活跃的领域。在本文中我们将研究一类稳健的非参数估计:M估计。与其他类型的非参数估计量(如非参数最小二乘估计量)相比较,M估计量有以下的优点:它们对于异常点是稳健的,并且即使当观测值被污染或者残差是重尾分布时,它们仍然有很好的性质。M估计是由Huber在1964年提出并用于位置参数的估计。M估计是一类稳健的估计。并且如Huber在1973所指出,当涉及到渐近理论时,M估计比其他的稳健估计(如L估计以及R估计)更容易处理。自从被提出以来,M估计的方法不论是在参数情形还是在非参数情形中都得到了深入的研究。不仅如此,一些学者还提出了改良化的M估计量。这些改良化的M估计量不仅继承了M估计量本身的优点,而且还具备了其他一些估计量的良好性质。例如,局部M估计量就是将局部线性光滑化方法与M估计的方法相结合后所产生的。因此,局部M估计量继承了局部多项式估计的优点并且克服了其非稳健性的缺点。我们将在第二章中研究相依空间过程的非参数回归函数及其导数的局部M估计。过去对非参数M估计的研究大多针对于时间序列。对空间数据(或随机场)的稳健估计的研究相对比较少。然而在近几年中,越来越多的人开始关注空间数据的建模。这是因为空间数据在很多领域中都有广泛的应用,如经济学,流行病学,环境科学,图像分析以及海洋学等。因此在本文中,我们首先探讨一些相依空间数据的非参数M回归估计的渐近理论。在§2.1中,我们得到了相伴随机场非参数回归函数及其导数的局部M估计量的弱相合性以及渐近正态分布。在本节中,由于我们需要运用Bulinski引理来计算一些相伴随机场变量的非线性函数的协方差,所以我们对损失函数的导数ψ加了相对较强的限制条件。在§2.2中,我们建立了一个空间固定设计模型中回归函数及其导数的局部M估计量的弱相合性,强相合性以及渐近分布。该节中的空间过程满足一定的混合条件。由于§2.1以及之前一些文献中的损失函数ρ及其导数ψ都需要满足一些较为苛刻的条件,这使得一些重要的特殊例子都被排除在外。而我们在§2.2中所使用的方法则使得ρ与ψ的条件大为减弱。我们所考虑的ρ函数涵盖了此前的大部分作者所考虑的ρ。在§2.3中,我们建立了混合空间过程的非参数回归函数及其导数的局部M估计量的强Bahadur表示式。由此表示式,我们可以得到该局部M估计量的强相合性以及渐近正态分布。在§2.4中,我们用Monte-Carlo试验来说明第二章中所研究的局部M估计量的表现。由于我们一般不能通过定义局部M估计量的估计方程直接得到该估计量的明确表达式,所以我们采取了一个迭代的过程来推导该估计量。模拟结果显示,我们的估计方法在处理被污染或者重尾残差时的效果比NW(Nadaraya-Watson)估计量要好得多。随着科学技术的发展,数据收集与测量的手段和方法也在不断进步,因此在实际应用中我们经常需要处理泛函型数据(如随机曲线)。泛函数据分析在很多领域,如犯罪学,经济学以及神经生理学,都有重要的应用。因此在最近几年中,越来越多的研究者开始关注泛函数据的建模与分析。在第三章中,我们将考虑混合泛函型数据的非参数回归函数的M估计。此章中我们所考虑的回归变量取值于某一抽象的半度量空间(例如Rd空间,Banach空间以及Hilbert空间),而响应变量则为实值随机变量。我们提出用非参数M估计的方法来对定义于抽象泛函空间的回归函数进行估计。我们建立了该M估计量的渐近相合性以及渐近分布。我们所要求的关于损失函数ρ及其导数ψ的条件在此类问题的研究是比较弱的,这使得我们的结果包括了一些重要的估计量,如最小绝对距离估计量,混合最小二乘与最小绝对距离估计量。另外我们还给出了两个满足第三章中混合条件的泛函序列的例子。最后,我们用Monte-Carlo模拟来说明我们的方法能很好地处理重尾残差。在第四章中,我们考虑一个固定设计回归模型。在这个模型中,残差为一个长程相依的线性过程。我们用非参数M估计量来对模型中的回归函数进行估计,并得到了该M估计量的渐近一阶以及渐近二阶展开。我们将所得到的结果与NW估计量进行了比较,通过比较我们发现:非参数M估计量与NW估计量是渐近一阶等价的,这表明M估计量与NW估计量有相同的渐近分布。另外我们还证明了非参数M估计量与NW估计量之差在适当的标准化后存在着极限分布,这一极限分布与长程相依的参数α有关。我们通过一个模拟试验来比较非参数M估计量与NW估计量的有限样本性质。我们通过两个残差为长程相依线性过程的固定设计模型来比较这两个估计量的均方误差。此外,我们还画出了这两个估计量的轨迹。从模拟结果可以发现,与NW估计量相比较,非参数M估计量对污染数据是稳健的。在本文第二至第四章中所涉及的随机样本都被假设为是平稳的。然而由于在计量经济以及金融中存在着很多的非平稳数据,例如价格以及汇率,所以在第五章中我们研究一类非平稳变量的非参数回归估计。单位根过程是一类在计量经济中有重要应用的非平稳过程,所以在此章中我们考虑共变量是单位根过程的一个非线性共积分模型。我们建立了该非线性共积分模型的回归函数的M估计量的弱相合性以及渐近分布。该渐近分布是混合正态的,并且不同于平稳时间序列的相关结果。从我们所得到的结果可以发现,第五章中所考虑的非平稳时间序列的非参数M估计量的收敛速度比平稳时间序列的收敛速度要慢,而这也正是我们所预期的,因为非平稳随机样本落在某一固定点的邻域中的观测值比平稳时间序列要少。在§5.3的模拟中,我们依然用迭代方法来推导非平稳数据的非参数回归函数的M估计量。我们分别给出了三个例子并进行了Monte-Carlo试验。通过比较非参数M估计量与对应的NW估计量的表现,我们可以看出:当残差被污染或者是重尾分布时,M估计量的稳健性比NW估计量要好得多。

论文目录

  • 摘要
  • Abstract
  • 第1章 引言
  • 1.1 M估计的发展
  • 1.2 本文主要成果
  • 1.3 本文的组织结构
  • 第2章 相依随机场中非参数局部M估计量的渐近性质
  • 2.1 相伴随机场中非参数局部M估计的渐近结果
  • 2.2 混合随机场中固定设计模型的非参数局部M估计
  • 2.3 混合随机场中非参数局部M估计量的Bahadur表示
  • 2.4 相关的例子及Monte-Carlo模拟结果
  • 2.5 本章主要结果的证明
  • 2.5.1 2.1中主要结果的证明
  • 2.5.2 2.2中主要结果的证明
  • 2.5.3 2.3中主要结果的证明
  • 2.6 本章小结
  • 第3章 泛函型随机变量非参数M估计的渐近结果
  • 3.1 泛函型随机变量回归估计的发展
  • 3.2 非参数泛函M估计的渐近性质
  • 3.3 几个例子及模拟结果
  • 3.4 本章主要结果的证明
  • 3.5 本章小结
  • 第4章 残差为长程相依线性过程的固定设计模型中非参数M估计量的渐近展开
  • 4.1 长程相依过程的定义及其在计量经济中的应用和发展
  • 4.2 残差为长程相依线性过程的固定设计模型中非参数M估计量的渐近展开
  • 4.2.1 非参数M估计量的渐近一阶展开
  • 4.2.2 非参数M估计量的渐近二阶展开
  • 4.3 Monte-Carlo模拟结果
  • 4.4 本章主要结果的证明
  • 4.4.1 定理4.1的证明
  • 4.4.2 定理4.2的证明
  • 4.5 本章小结
  • 第5章 非线性共积分模型的非参数M估计
  • 5.1 非平稳时间序列统计推断研究的发展
  • 5.2 非线性共积分模型中非参数M估计的渐近结果
  • 5.3 迭代方法以及模拟结果
  • 5.3.1 一步迭代法
  • 5.3.2 Monte-Carlo模拟
  • 5.4 本章主要结果的证明
  • 5.5 本章小结
  • 参考文献
  • 作者简历及在学期间所取得的科研成果
  • 致谢
  • 相关论文文献

    • [1].人口普查质量评估中的三系统估计量研究[J]. 数量经济技术经济研究 2020(08)
    • [2].浅谈估计量的优良性标准[J]. 现代营销(下旬刊) 2016(12)
    • [3].创业活动指数的哈特利估计量构造[J]. 统计与决策 2017(08)
    • [4].人口普查漏报估计研究[J]. 工程数学学报 2020(05)
    • [5].基于轮换样本连续性调查的校准组合估计方法研究[J]. 数理统计与管理 2017(04)
    • [6].有辅助信息时有限总体分布函数的新估计量[J]. 数理统计与管理 2012(02)
    • [7].点估计的一种新方法[J]. 统计与决策 2010(11)
    • [8].广义回归估计量在中国农业抽样调查中的应用研究[J]. 统计与信息论坛 2020(06)
    • [9].采用双辅助信息的总体均值的一种新估计量[J]. 统计与决策 2010(18)
    • [10].均匀分布U〔θ-1/2,θ+1/2〕中参数θ的四种估计量[J]. 大学数学 2009(05)
    • [11].基于对数变换的小域的稳健估计量[J]. 统计与信息论坛 2010(12)
    • [12].论双系统估计量的无偏性[J]. 数理统计与管理 2017(02)
    • [13].一种乘积估计量的研究[J]. 内蒙古工业大学学报(自然科学版) 2014(03)
    • [14].捕获再捕获抽样估计量的模拟研究[J]. 统计与信息论坛 2011(03)
    • [15].交互作用偏差对双系统估计量的影响[J]. 数理统计与管理 2017(04)
    • [16].企业生产效率改进视角的湖南开发区政策效果评估——基于反事实匹配估计量方法的实证研究[J]. 湘潭大学学报(哲学社会科学版) 2016(06)
    • [17].基于交叉子总体的抽样设计及其估计方法研究[J]. 统计研究 2020(08)
    • [18].浅谈全国人口总数的估计方法[J]. 南国博览 2019(08)
    • [19].本期导读[J]. 统计研究 2017(06)
    • [20].带复合泊松跳扩散模型的点波动率门限估计量的渐近性质[J]. 数学杂志 2017(05)
    • [21].关于捕获再捕获抽样的置信区间[J]. 统计与信息论坛 2013(07)
    • [22].分层随机抽样条件下不同估计量的比较与选择[J]. 统计与决策 2017(19)
    • [23].人口普查,事后计数调查和行政记录的三系统估计量[J]. 数理统计与管理 2016(04)
    • [24].不跨越边界基于Horvitz-Thompson估计量的分层自适应群团抽样[J]. 林业科学 2010(07)
    • [25].均匀分布位置参数的估计量的渐近分布及应用[J]. 纯粹数学与应用数学 2009(04)
    • [26].一类新的极值估计量[J]. 西南大学学报(自然科学版) 2009(11)
    • [27].随机环境中具有迁入的分枝过程的时序估计量的性质[J]. 经济数学 2008(04)
    • [28].模型辅助条件下广义最优回归抽样估计方法研究[J]. 数理统计与管理 2020(02)
    • [29].方差未知时两个正态总体均值序条件下的估计量[J]. 江汉大学学报(自然科学版) 2008(03)
    • [30].一类新的极值指标估计量的渐进性质(英文)[J]. 西南大学学报(自然科学版) 2008(11)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

    计量经济模型中非参数M估计的渐近理论
    下载Doc文档

    猜你喜欢