基于SOC的细纱机集散控制系统设计

基于SOC的细纱机集散控制系统设计

论文摘要

目前纺织工业使用的细纱机控制系统大多由PLC系统构成。而以SOC单片机、ARM为微处理器配合FPGA/CPLD可编程逻辑器件架构的嵌入式系统以其高可靠性、高性价比、高度集成化等特点在工控等领域的应用日益广泛,为细纱机控制系统的架构形式提供了新的方式。本文主要研究了嵌入式技术在细纱机集散控制系统中的一种新的尝试,实现了上位机主控模块、上位机LED逻辑显示模块、下位机数据采集与转速控制模块、CAN通信网络等关键技术,并对系统进行了初步测试。本文首先介绍了细纱机的工艺过程与嵌入式技术的相关技术背景。在此基础上,分析了传统细纱机PLC控制系统的技术特点与优缺点,然后结合当今先进的SOC技术与嵌入式技术等,提出了一种基于SOC的细纱机集散控制系统。该方案利用SOC处理器的高性能和丰富的片上资源完成对细纱机的控制需求,并力争克服传统控制方式的技术缺点。新方案的控制系统主要由三部分组成,分别为上位机部分、下位机部分和CAN通信网络部分。上位机部分又分为由ARM控制的主控模块和由CPLD实现的LED大屏幕信息显示模块。新方案按照集散控制系统架构来设计,将系统分为一个主控与多个从机的分布式结构。本文不仅从理论上分析了基于SOC技术的细纱机控制方案的可行性,并且完成了对上位机主控模块、上位机LED逻辑显示模块、下位机数据采集与转速控制模块、CAN通信网络这四部分的软硬件设计,最后进行了系统联调测试。在布线的过程中还增加了现场抗干扰措施的设计与长走线可行性分析等。从完成的设计表明,基于SOC的细纱机控制方案不仅可以完成细纱机的各种功能,而且也可以弥补一部分传统的PLC细纱机控制方案中的不足。本系统目前处于实验性设计阶段,后续工作将主要围绕分析现场实际的干扰源、抗干扰措施的进一步改善与稳定性测试开展。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 引言
  • 1.2 细纱机工作流程及FA506型细纱机
  • 1.3 嵌入式系统、CAN通信网络简介
  • 1.4 论文所完成的主要工作及结构安排
  • 第二章 FA506型细纱机工作原理分析及其控制系统研究
  • 2.1 工艺要求
  • 2.2 基于PLC的细纱机控制方案介绍
  • 第三章 基于SOC的细纱机集散控制系统整体设计
  • 3.1 系统的整体架构及技术特点
  • 3.2 系统中各模块实现方式
  • 3.3 系统方案可行性分析及处理器选型
  • 第四章 上位机主控部分软硬件设计
  • 4.1 上位机主控部分整体设计
  • 4.2 上位机控制模块硬件及驱动设计
  • 4.3 上位机控制模块软件设计
  • 第五章 上位机 LED逻辑显示模块设计
  • 5.1 上位机 LED逻辑显示模块总体设计
  • 5.2 LED显示驱动模块硬件设计
  • 5.3 CPLD逻辑控制模块硬件设计
  • 5.4 LED显示驱动模块软件设计
  • 第六章 下位机数据采集与转速控制部分软硬件设计
  • 6.1 下位机数据采集与转速控制部分总体设计
  • 6.2 下位机数据采集与转速控制部分硬件设计
  • 6.3 下位机数据采集与转速控制部分软件设计
  • 第七章 CAN总线通信网络物理接口及协议设计
  • 7.1 CAN总线物理实现
  • 7.2 CAN网络协议设计
  • 第八章 系统 PCB抗干扰设计及综合调试
  • 8.1 PCB板的设计和抗干扰问题
  • 8.2 系统调试
  • 结束语
  • 参考文献
  • 附录
  • 攻读学位期间发表的学术论文情况
  • 致谢
  • 相关论文文献

    • [1].电动汽车电池管理系统SOC估计方法分析[J]. 南方农机 2019(23)
    • [2].SOC区间选择对动力电池性能的影响[J]. 中国汽车 2019(12)
    • [3].磷酸铁锂电池SOC估算的研究[J]. 汽车实用技术 2020(04)
    • [4].新型城轨车用超级电容器的SOC估算方法[J]. 储能科学与技术 2019(S1)
    • [5].城轨车用超级电容器SOC的估算方法[J]. 电池 2020(02)
    • [6].基于扩展卡尔曼滤波的蓄电池组SOC估算[J]. 电源技术 2020(08)
    • [7].基于量子索引图像的SoC信息隐藏技术[J]. 信号处理 2020(08)
    • [8].铅酸蓄电池SOC诊断放电特性研究[J]. 电声技术 2019(10)
    • [9].基于SoC的负载识别智能电表的设计与实现[J]. 自动化与仪表 2016(11)
    • [10].基于容量修正的阀控式铅酸蓄电池SOC估计[J]. 电源技术 2017(01)
    • [11].电动汽车磷酸铁锂电池最佳SOC工作区研究[J]. 电源技术 2017(04)
    • [12].有色噪声条件下的动力电池SOC估算[J]. 电力电子技术 2017(06)
    • [13].锂离子动力电池SOC估算研究[J]. 科技视界 2017(17)
    • [14].一种基于SOC芯片的数据采集器系统设计[J]. 数码世界 2020(06)
    • [15].考虑SOC平衡的并网微电网能量供需平衡方案[J]. 太阳能学报 2020(11)
    • [16].国产双界面金融卡SoC芯片评测技术研究[J]. 信息技术与标准化 2020(04)
    • [17].基于深度强化学习卡尔曼滤波锂离子电池SOC估计[J]. 天津科技大学学报 2020(04)
    • [18].基于开路电压预测的SOC估算方法[J]. 河北工业科技 2017(01)
    • [19].体育锻炼在大学生意向性自我调节SOC策略与自尊之间的中介效应[J]. 天津体育学院学报 2016(05)
    • [20].锂离子电池特性建模与SOC估算算法的研究[J]. 微型机与应用 2017(02)
    • [21].蓄电池SOC的研究及预测方法[J]. 电源技术 2016(06)
    • [22].基于结构逻辑树的电池组SOC估算[J]. 电源技术 2014(12)
    • [23].大容量锂离子电池SOC估算原理及应用[J]. 电源技术 2015(05)
    • [24].基于SoC微功耗驱动的高性能欠压脱扣器研究与设计[J]. 电器与能效管理技术 2014(18)
    • [25].基于SOC的实时操作系统分析[J]. 科技资讯 2012(25)
    • [26].浅析SOC与数字图书馆的安全建设[J]. 苏盐科技 2011(01)
    • [27].关于拟SOC-内射模[J]. 阜阳师范学院学报(自然科学版) 2011(02)
    • [28].基于System Generator的音频解码SoC系统设计与实现[J]. 电声技术 2010(01)
    • [29].基于混合建模的SoC软硬件协同验证平台研究[J]. 单片机与嵌入式系统应用 2009(05)
    • [30].SOC功能测试系统的设计与实现[J]. 电脑知识与技术 2009(19)

    标签:;  ;  ;  

    基于SOC的细纱机集散控制系统设计
    下载Doc文档

    猜你喜欢