基于小波分析的变压器保护研究

基于小波分析的变压器保护研究

论文题目: 基于小波分析的变压器保护研究

论文类型: 博士论文

论文专业: 电力系统及其自动化

导师: 周家启,卢继平

关键词: 变压器保护,暂态仿真,励磁涌流,故障电流,小波变换关键词

文献来源: 重庆大学

发表年度: 2005

论文摘要: 电力变压器是电力系统中非常重要的设备,它对于电力系统的安全可靠运行有很大的影响。随着电力系统的扩展和现代材料发展,电力变压器的容量扩大,迫切需要改善变压器差动保护动作状况。变压器的准确动作依赖于励磁涌流和故障电流期间的执行装置。这篇论文的研究工作集中于提出新的差动电流保护算法。这篇文章包括两个部分:第一个部分是变压器的暂态分析,它以仿真出单电源系统所有运行情况的数据为基础进行分析。变压器磁滞曲线的仿真是变压器仿真中的关键问题。变压器的仿真模型铁磁材料选用的是特定质量的铁磁材料。基于这个仿真过程,铁心材料,磁路参数的设置,磁路结构这些因素的影响,磁滞曲线能够被清楚地认识。匝间故障和匝地故障和其它各种变压器故障都进行了仿真。第二阶段是使用仿真数据进行小波变换,计算其模极大值。小波变换模极大值的结果表明这种算法可作为小波分析应用于电力系统继电保护领域的另一种形式,并且各种故障类型,不同的过渡电阻值和电源电压相角,都能有效地检测出故障电流,并区分区内,区外故障和励磁涌流。这种算法可有效区分外部故障切除,系统恢复供电时所产生的励磁涌流。无论空载或带载,变压器带内部故障合闸也能够区分出来。理论分析和仿真结果表明此算法即使CT饱和情况下也能有效地运作。 本研究工作有以下创新点: 1) 使用saber软件建立变压器饱和模型,在仿真变压器绕组故障时更为有效 2) 提出新方法检测变压器故障,该方法可以有效区分内外部故障和识别励磁涌流。 3) 通过仿真确定利用小波实现变压器保护的相关参数。

论文目录:

Chinese abstract

English abstract

List of Contents

List of tables

List of figures

Chapter One Introduction and Review of Relevant Literature

1.1 Introductory Remarks

1.2 Power system protection

1.3 Protective relaying requirements

1.4 Reasons of power transformer faults

1.5 Types of transformer faults

1.6 Power transformer protection

1.7 Types of Protection employed to power transformer

1.7.1 Electrical based fault detection

1.7.2 Mechanical based fault detection

1.8 Power transformer differential current protective relaying operating philosophy

1.9 Literature review of power transformer differential relaying

1.9.1 Wave shape based recognition technique

1.9.2 Harmonic-based restraint algorithm techniques

1.9.3 Differential equation algorithm (DEA) based current-flux linkage relationship reconstruction technique

1.9.4 Fuzzy logic based algorithm techniques

1.9.5 Artificial neural network (ANN) based algorithm techniques

1.9.6 Wavelet based algorithm techniques

1.10 Objective of the research

1.11 Innovative points

1.12 Thesis organization

Chapter Two Transformer Differential Protective Relaying Concept

2.1 Introduction

2.2 Differential current protective relaying

2.3 Power transformer differential current protective relaying

2.4 Magnetizing inrush current phenomenon

2.4.1 Characteristics of the magnetizing inrush current

2.4.2 Factors affecting the magnetizing inrush current

2.5 Percentage-bias

2.6 Digital protective relaying

2.7 Transformer digital differential current protective relaying algorithms

2.8 Wave-shape-based identification algorithm technique

2.8.1 Criterion 1

2.8.2 Shortcomings of criterion 1

2.8.3 Criterion 2

2.8.4 Shortcomings of criterion 1

2.8.5 Disadvantages of waveshape-based identification algorithm

2.9 Harmonic-based restraint algorithm techniques

2.9.1 Discrete Fourier transform (DFT) based fundamental and harmonic frequency components estimation approach

2.9.2 The least error squares (LES) technique based exponentially decaying components estimation approach

2.10 Differential equation algorithm (DEA) based current-flux linkage relationship reconstruction technique

2.10.1 DEA tcchnique application for single-phase transformer

2.10.2 DEA technique application for three-phase Y/Y connected transformer

2.10.3 DEA technique application for three-phase Δ/Y connected transformer

2.11 Wavelet transform based differential current protective relaying technique

2.12 The proposed technique

2.18 Chapter summary

Chapter Three Wavelet transform

3.1 Introduction

3.2 The transform techniques

3.3 Fourier transform (FT)

3.4 Short Time Fourier Transform (STFT)

3.4.1 Characteristics of short time Fourier transform (STFT)

3.4.2 Shortcomings of FT, FFT & STFT

3.5 Wavelet Transform technique

3.6 Wavelet transformer based signal analysis technique

3.7 Wavelet transform based multiresolution procedure

3.7.1 The concept of multiresolution

3.7.2 Members of wavelet family

3.7.3 Normalizing factor

3.7.4 The wavelet transform of time dependent signal

3.7.5 The discrete (dyadic) wavelet transform

3.7.6 The inner product of the scaling

3.7.7 The wavelet basis function as a recursive difference equation

3.7.8 Time-frequency localization philosophy

3.7.9 Wavelet time-scale domain tiling

3.7.10 Wavelet time-frequency domain tiling

3.7.11 Wavelet decompositions

3.8 Wavelet packet transform (WPT)

3.9 Wavelet transform characteristics

3.10 The right wavelet

3.11 Wavelet Transform application

3.12 Wavelet transform application in electrical power system

3.13 Chapter summary

Chapter Four Digital simulation of inrush and fault currents

4.1 Power Transformer Simulation by Saber

4.2 Building the transformer model

4.3 Simulation of inrush currents

4.4 Simulation of fault currents

4.4.1 External faults

4.4.2 Internal faults

4.4.3 Simulation of winding faults

4.4.4 Simulation of closing on an unloaded transformer with fault existence

4.5 Chapter summary

Chapter Five Wavelet maximum modulus algorithm technique & simulation result

5.1 Wavelet maximum modulus based differential current relaying technique

5.2 The discrete wavelet transform maximum modulus technique

5.3 The wavelet transform modulus maxima algorithm approach

5.4 Algorithm requirements

5.4.1 Wavelet selection

5.4.2 Determination of decomposition level

5.4.3 Determination of sampling frequency

5.4.4 Determination of the threshold value

5.5 Simulation results of the single source based transformer model

5.5.1 Simulation results for 3-phase to ground (A-to-B-to-C-to-ground) faults

5.5.2 Simulation results of 2-phase to ground (A-to-B-to-ground) faults

5.5.3 Simulation results for 1-phase to ground (A-to-ground) faults

5.5.4 Simulation results for primary side winding faults

5.5.5 Simulation of primary & secondary winding (turn-to-ground) faults existing at closing instant

5.6 Simulation results of Double source based transformer model

5.6.1 Simulation results for 3-phase to ground (A-to-B-to-C-to-ground) faults

5.6.2 Simulation results for 2-phase to ground (A-to-B-to-ground) faults

5.6.3 Simulation results for 1-phase to ground (A-to-B-ground)faults

5.6.4 Simulation results for primary side winding faults

5.6.5 Simulation results for secondary side winding faults

5.7 Simulation results for closing at no load

5.8 Simulation results for closing at primary internal 3-phase (A-to-B-to-C-to-ground)fault

5.9 Simulation results for closing at primary internal 2-phase (A-to-B-to- ground)fault

5.10 Discussion of the results

5.11 Chapter summary

Chapter Six Conclusions and Future Work

6.1 Summary and conclusions

6.2 Suggestions for next work

Acknowledgement

References

VITA

Appendices

1. List of publication

2. Chincse translation of the conclusions and summaries

创新点

研究重要性

独创性声明

学位论文版权使用授权书

发布时间: 2006-12-06

参考文献

  • [1].基于智能变电站多元信息的变压器新型保护方法研究[D]. 彭放.山东大学2018
  • [2].变压器数字仿真和数字式主保护新原理的研究[D]. 郑涛.华北电力大学(北京)2005
  • [3].变压器暂态仿真模型及基于支持向量机的变压器保护原理研究[D]. 郝文斌.西南交通大学2006
  • [4].变压器仿真计算模型与保护原理研究[D]. 韩正庆.西南交通大学2006
  • [5].变压器主保护新原理和新算法的研究[D]. 马静.华北电力大学(河北)2008
  • [6].大型电力变压器快速主保护新原理及其应用问题的研究[D]. 孙鸣.合肥工业大学2008
  • [7].直流换相失败对交流侧保护的影响分析与对策研究[D]. 申洪明.华北电力大学(北京)2016
  • [8].电力变压器内部故障计算及新型保护研究[D]. 王雪.华北电力大学2012
  • [9].大型变压器保护新原理研究和装置研制[D]. 邓祥力.华中科技大学2011
  • [10].基于功率量的电力变压器保护新原理及高速算法研究[D]. 古斌.广西大学2014

相关论文

  • [1].大型变压器暂态机理与保护新原理研究[D]. 邵德军.华中科技大学2009
  • [2].变压器数字仿真和数字式主保护新原理的研究[D]. 郑涛.华北电力大学(北京)2005
  • [3].变压器主保护新原理和新算法的研究[D]. 马静.华北电力大学(河北)2008
  • [4].大型电力变压器快速主保护新原理及其应用问题的研究[D]. 孙鸣.合肥工业大学2008

标签:;  ;  ;  ;  ;  

基于小波分析的变压器保护研究
下载Doc文档

猜你喜欢