论文摘要
粗糙集理论自提出以来,其理论得到发展,它在许多方面克服了传统数据分析理论显现出的诸多不足,表现出其独特的优势,受到了国内外学术界的广泛关注。但是经典粗糙集模型的一个局限性是它所处理的分类必须是完全正确的或肯定的,因为它是严格按照等价类来分类的,因而它的分类是精确的,亦即“包含”或“不包含”,而没有某种程度上的“包含”或“属于”。为了克服这个缺点,W.ziarko教授于1993年提出一种可变精度的粗糙集模型(VPRS)。本文的主要研究工作包括以下几个方面:(1)从分类质量、相对正域以及决策类下近似这三个方面的特征进行分析,比较经典粗糙集理论和变精度粗糙集理论约简特征的区别;(2)深入分析了可变精度粗糙集模型的约简异常,通过引入条件类包含度阀值的概念,描述了包含度与分类率的区间关系,分析了包含度区间的动态变化和正区域变化引起的约简异常,提出了消除异常的区间约简基本思想,并构造了区间约简算法,完善了可变精度粗糙集模型约简;(3)对变精度粗糙集模型下的属性约简算法进行研究,首先分析了变精度粗糙集下的近似约简算法和分布约简算法,并分析了其优缺点。接着对分布约简的可辨识矩阵中等价类的区分关系进行改进,提出一种新的近似约简算法。新算法的限制条件介于近似约简和分布约简之间,它克服了分布约简对信息系统过于苛刻的要求,在一定程度上克服了近似约简命题规则与原系统完全不相容的缺陷。经过理论证明和实例分析发现改进后的算法在时间复杂度上比近似约简低,而获得约简的可能性比分布约简高。
论文目录
相关论文文献
- [1].三支决策-基于粗糙集与粒计算研究视角[J]. 智能系统学报 2019(06)
- [2].多粒度粗糙集近似集的增量方法[J]. 山东大学学报(理学版) 2020(01)
- [3].《粗糙集理论及其应用》研究生课程教学改革与实践[J]. 闽南师范大学学报(自然科学版) 2020(01)
- [4].基于粗糙集理论的水利工程现代化管理评价[J]. 黑龙江水利科技 2020(01)
- [5].基于代数角度的变精度多粒度粗糙集的约简[J]. 咸阳师范学院学报 2020(02)
- [6].局部广义多粒度粗糙集[J]. 计算机工程与科学 2020(08)
- [7].可变多粒度粗糙集粒度约简研究[J]. 哈尔滨师范大学自然科学学报 2019(01)
- [8].基于覆盖粗糙集的超图连通性[J]. 数码设计 2016(02)
- [9].关系粗糙集的邻域拟阵结构研究[J]. 数码设计 2016(02)
- [10].基于粒度矩阵的程度多粒度粗糙集粒度约简[J]. 系统工程与电子技术 2016(12)
- [11].基于最小/最大描述的多粒度覆盖粗糙直觉模糊集模型[J]. 计算机科学 2017(01)
- [12].优势关系下多粒度粗糙集排序方法及其应用[J]. 计算机工程与应用 2017(01)
- [13].优势关系多粒度粗糙集中近似集动态更新方法[J]. 中国科学技术大学学报 2017(01)
- [14].基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版) 2017(03)
- [15].组合多粒度粗糙集及其在教学评价中的应用[J]. 数码设计 2017(01)
- [16].基于粗糙集的大学生学习与就业关系分析[J]. 计算机技术与发展 2017(05)
- [17].粗糙集理论及其应用综述[J]. 物联网技术 2017(06)
- [18].不完备信息系统中的广义多粒度双相对定量决策粗糙集[J]. 南京大学学报(自然科学) 2017(04)
- [19].基于可变多粒度概率粗糙集的分类模型[J]. 模式识别与人工智能 2017(08)
- [20].基于下近似分布粒度熵的变精度悲观多粒度粗糙集粒度约简[J]. 计算机科学 2016(02)
- [21].可变程度多粒度粗糙集[J]. 小型微型计算机系统 2016(05)
- [22].粗糙集理论在国内旅游研究中的应用[J]. 旅游纵览(下半月) 2014(14)
- [23].基于信息量的悲观多粒度粗糙集粒度约简[J]. 南京大学学报(自然科学) 2015(02)
- [24].粗糙集理论在故障诊断中的应用研究[J]. 科技视界 2015(16)
- [25].粗糙集理论在输变电工程造价风险评价指标体系优化中的应用[J]. 土木工程与管理学报 2015(04)
- [26].基于粗糙集理论的多标度层次分析教师教学评价模型[J]. 数学学习与研究 2017(11)
- [27].基于粗糙集理论和因果图的故障诊断[J]. 重庆师范大学学报(自然科学版) 2020(02)
- [28].基于粗糙集的高校学生实践能力因素研究[J]. 计算机技术与发展 2020(04)
- [29].邻域粗糙集属性约简在民族团结进步创建评价中的应用[J]. 信息与电脑(理论版) 2020(12)
- [30].新型灰狼算法的粗糙集属性约简及应用[J]. 计算机工程与应用 2017(24)