二维非线性抛物型积分—微分方程动边界问题的有限元方法

二维非线性抛物型积分—微分方程动边界问题的有限元方法

论文摘要

抛物型积分微分方程可广泛应用于描述具有记忆材料的热传导,气体扩散等问题中的对流—扩散现象。本文对一类二维非线性抛物型积分微分方程动边界问题的有限元方法进行了研究,给出了半离散和全离散有限元格式及相应的最佳L2模和能量模误差估计,在这一过程中主要借助了变量代换和Ritz-Volterra投影。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 引言
  • 第二章 变分形式及有限元逼近
  • 第三章 Ritz-Volterra投影简介
  • 第四章 有限元格式的数值分析
  • 第一节 半离散有限元格式
  • 第二节 全离散有限元格式
  • 第五章 对本文所得结果的几点说明
  • 第一节 对格式(2.8)的线性化处理
  • 第二节 一类简化的积分微分方程的特殊处理
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].沿曲线的抛物型奇异积分算子(英文)[J]. 数学进展 2017(04)
    • [2].基于小波基的非线性抛物型系统模型预测控制[J]. 电机与控制学报 2015(01)
    • [3].双参数奇摄动非线性抛物型系统的广义尖层解[J]. 应用数学学报 2020(05)
    • [4].抛物型积分微分方程双线性元方法的新估计[J]. 郑州大学学报(理学版) 2016(04)
    • [5].基于抛物型缓坡方程的某码头泊稳问题研究[J]. 水运工程 2013(01)
    • [6].抛物型模糊二叉树欧式期权定价模型[J]. 江西师范大学学报(自然科学版) 2012(02)
    • [7].抛物型Hessian方程的外问题[J]. 数学进展 2016(04)
    • [8].抛物型粗糙核Littlewood-Paley算子在齐次Triebel-Lizorkin空间上的有界性[J]. 重庆理工大学学报(自然科学) 2013(01)
    • [9].二维抛物型问题的特征正交分解法[J]. 湖南城市学院学报(自然科学版) 2018(02)
    • [10].非线性抛物型缓坡方程的数值模拟[J]. 水动力学研究与进展A辑 2010(01)
    • [11].粗糙核带参数的抛物型Marcinkiewicz函数的一个注记[J]. 纯粹数学与应用数学 2010(05)
    • [12].一类非线性耦合抛物型方程组解的整体不存在性[J]. 中北大学学报(自然科学版) 2018(03)
    • [13].二维环面及平面分片抛物型映射的若干动力学性质[J]. 上海大学学报(自然科学版) 2010(03)
    • [14].外区域上的抛物型Monge-Ampère方程[J]. 数学学报(中文版) 2015(03)
    • [15].拟线性抛物型积分微分方程动边界的有限元法[J]. 阴山学刊(自然科学版) 2009(01)
    • [16].“双抛物型”参数方程的探讨[J]. 高等数学研究 2017(03)
    • [17].完备α度量的相对抛物型仿射球(英文)[J]. 数学进展 2013(01)
    • [18].一类具有非线性吸收项的耦合抛物型方程组解的性质研究[J]. 山西大同大学学报(自然科学版) 2016(04)
    • [19].一类2维具有源项的抛物型Monge-Ampère方程的精确解[J]. 吉林大学学报(理学版) 2010(06)
    • [20].一类非线性脉冲中立抛物型分布参数系统的振动条件[J]. 数学物理学报 2020(03)
    • [21].一类非线性脉冲抛物型系统在Robin边值条件下的振动性[J]. 装甲兵工程学院学报 2015(03)
    • [22].一类四阶抛物型积分-微分方程的混合有限体积方法[J]. 科学技术与工程 2011(23)
    • [23].一类一般形式的抛物型Monge-Ampère方程[J]. 数学年刊A辑(中文版) 2009(03)
    • [24].抛物型积分算子的弱型极限行为[J]. 中国科学:数学 2018(10)
    • [25].对称抛物型模糊变量下的可靠性及灵敏度分析[J]. 力学季刊 2010(01)
    • [26].四阶线性抛物型积分-微分方程的混合间断时空有限元法[J]. 应用数学 2008(03)
    • [27].二维抛物型问题的Strang型交替分段区域分裂格式(英文)[J]. 计算物理 2018(04)
    • [28].拟线性抛物型趋化模型的整体有界解研究(英文)[J]. 数学季刊(英文版) 2019(03)
    • [29].抛物型薛定谔方程的最优正则性估计(英文)[J]. 应用数学 2012(01)
    • [30].抛物型强对流-扩散方程的泡函数有限元法[J]. 科学技术与工程 2009(18)

    标签:;  ;  ;  ;  

    二维非线性抛物型积分—微分方程动边界问题的有限元方法
    下载Doc文档

    猜你喜欢