(大唐长山热电厂汽机分厂辅机二班吉林松原138000)
摘要:电力生产活动是现代社会生活的基础。为保证电厂正常生产运作,电厂设备检修工作也成了重中之重。随着信息技术的发展,电厂设备检修工作也从传统的事后维修、粗放管理模式逐步转化为信息化管理。设备运行和检修的高效性是电厂安全生产的保障。电厂设备检修状态分析对设备的安全运行具有重要意义。电厂设备检修过程中产生了大量的数据,通过对电厂企业资产管理系统中的历史工单数据进行分析,运用关联规则方法,寻求设备类型与设备故障以及纠正措施之间的联系,为电厂设备检修工作提供决策支持。
关键词:数据挖掘;设备检修;关联规则;资产管理
随着近些年数据的海量增长,为了从庞大的数据中提取有用的知识数据挖掘应运而生。数据挖掘广泛应用于各种领域,包括电子商务、工程设计、资产管理等方面。通过提取电厂企业资产管理中的历史工单数据,运用关联规则Apriori算法,将资产管理系统中的设备检修数据进行挖掘分析。通过关联分析方法,可以得到设备类型与设备故障以及纠正措施之间的联系,通过图形和表格的表述形式更加直观地了解这些数据之间的联系,从而提高电厂设备检修工作的效率,并降低成本。
一、关联规则定义
二、Apriori算法描述
关联算法是数据挖掘中的一类重要算法。1993年,AGRAWALR等人首次提出了挖掘顾客易数据中项目集间的关联规则问题,其核心是基于两阶段频繁集思想的递推算法。该关联规则在分类上属于单维、单层及布尔关联规则,典型的算法是Apriori算法。Apriori算法将发现关联规则的过程分为两个步骤:第一步通过迭代检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集;第二步利用频繁项集构造出满足用户最小信任度的规则其中挖掘或识别出所有频繁项集是该算法的核心,占整个计算量的大部分。
三、基于关联规则的电厂设备检修分析
(一)分析目的
电厂设备运行过程中,各种故障都可能发生,而且设备发生的故障类型是多样的。多类型设备发生的故障类型则更多。为了保持供电稳定,减少设备维修停机时间非常重要。进行数据分析,了解设备最可能发生的故障类型,可以减少维修人员的负担降低出工成本。通过Apriori算法可以挖掘设备类型的种类及各设备会发生的故障类型’计算其故障率这样更有助于维修人员快速査找故障部位,申请维修备件然后及时更换,以降低设备停机时间。
(二)数据准备
本次数据挖掘的数据来源于某电厂企业资产管理系统的历史工单数据。(1)选取EAM系统中时间更新最近且较完整的数据。(2)使用系统中的导出功能将工单数据导出为xls格式,可被MicrosoftofficeExcel打开编辑。(3)由于导出字段名过多,在数据挖掘时不需要的内容太多,需要处理掉无用的字段。除此之外,还需要将作废工单、错误工单等无意义工单去除。最后得到有效数据总计10238条。(4)在去除大部分数据噪声后,挖掘所需要的数据整洁地出现在Excel表格中。大大降低了噪声数据的干扰,表1为历史工单中的部分数据信息。
某电厂设备命名编码规则如下:00—表示全厂公用系统,FB—表示再汽系统,CA—表离心泵FF—表示手动阀或挡板,QE—表示碎渣机,EK—表示380V及以下交流电机,CD—表示容积式往复泵,PG—表示皮带机,FA—表示主汽系统,AM—表示干固物容器,FC—表示电动阀或挡板,DL—表示干式除尘器。
(三)数据分析
采用Clementine软件中的Apriori模块对表1历史工单据进行关联分析。(1)将处理过的数据表格插入到Clementine中,用类型来完成所需分析字段的过滤,连接Apriori模型;(2)设置最低支持度及最小置信度,以分析频繁项集之间的关联规则;(3)生成报告结果。关联规则模型分析结果见表2.
表2按照置信度降序排列,仅列出部分规则。如表2中第1行数据,前项的设备类型FB—,后项的故障现象描述为泄漏,支持度为12.876%,置信度为66.423%。这便为维修人员的检修过程提供很大的帮助,能够尽快找出故障发生位置。第3行中,,2项有个设备类型为00—及故障现象描述为泄漏后项的纠正措施为DLE,支持度为16.048%,置信度为53.441%。这样的数据可以帮助维修人员减少故障分析时间,调整维修方案顺序还可以为企业增加新的知识经验,更换维修员工后也可以快速学习该类型故障的检修方案及纠正措施。
四、结语
随着信息的高速发展,无论是电厂资源管理还是其他行业(如电子商务,高校,金融行业),都需要依靠数据挖掘从海量的信息中挖掘有用的数据。本文通过电厂设备检修的历史工单数据,采用关联规则,探求电厂设备类型与常发生故障之间的联系,以期为今后设备的检修提供参考依据。
参考文献
[1]曹晋彰,王扬,朱承治,张扬,郭创新,曹一家.基于公共信息模型的电网企业资产管理信息模型及应用[J].电力系统自动化.2012(02)
[2]刘华婷,郭仁祥,姜浩.关联规则挖掘Apriori算法的研究与改进[J].计算机应用与软件.2009(01)
[3]何海涛,吕士勇,田海燕.基于改进Apriori算法的数据库入侵检测[J].计算机工程.2009(16)