硅衬底上AlGaN/GaN异质结材料的生长研究

硅衬底上AlGaN/GaN异质结材料的生长研究

论文摘要

氮化镓(GaN)是近年来发展最为迅速的第三代半导体材料之一。由于GaN的化学性质稳定,耐高温,直接带隙宽度大,高频大功率等特点,能够很好的弥补Si和AsGa等半导体材料的缺点,成为下一代半导体材料器件的主要应用材料,国内外研究的热点。AlGaN/GaN基高电子迁移率晶体管(HEMT)是以AlGaN/GaN异质结为基础的GaN微波功率器件,与传统的微波器件相比,HEMT具有高跨导,高饱和电流和高截止频率等优点,成为下一代通信行业中主要使用的微波器件。国内外已经对GaN材料进行了很多年的研究,并且达到了一定的商业化应用,但是仍然存在很多问题需要解决。本文首先介绍了国内外GaN外延材料的研究现状和应用前景,然后介绍了GaN晶体生长所采用的两步生长方案的每个步骤和生长过程,最后简述了生长的GaN晶体中的缺陷类型和对GaN晶体的影响。在实验部分,本论文详细论述了Si衬底上生长GaN晶体所使用的不同缓冲层,并且进行多次实验找到了使用不同缓冲层所生长GaN的窗口值,并且给出了所生长样品的XRD,AFM和金相显微镜所测量的结果。对于2英寸的Si生长GaN我们并且横向对比了各种缓冲层的优劣,最后发现使用渐变AlGaN缓冲层所生长的GaN外延层晶体质量最好。最后我们研究了使用超晶格来生长GaN外延层,为下一步生长大尺寸的GaN外延晶体研究开展了前期研究。在上一步实验基础上,我们生长了插入AlN阻挡层的AlGaN/GaN异质结,并且针对AlGaN层的厚度和组分进行了优化,生长出了晶体质量和表面形貌达到国际水平的AlGaN/GaN异质结,为下一步HEMT器件的制作打下了基础。

论文目录

  • 摘要
  • Abstract
  • 目录
  • 1 绪论
  • 1.1 GaN 在光学和电学设备上的商业应用
  • 1.2 GaN 异质结使用缓存层生长
  • 1.3 本论文的主要研究内容
  • 2 Si 衬底上 AlGaN/GaN 异质结生长背景
  • 2.1 外延生长
  • 2.2 GaN 材料的选择
  • 2.3 衬底的选择
  • 2.4 Si 衬底上生长AlGaN/GaN 异质结的难点
  • 2.5 Si 衬底上AlGaN/GaN 中异质结的缺陷
  • 2.6 本章小结
  • 3 Si 衬底上GaN 外延层的生长
  • 3.1 有机金属化学气相沉积法
  • 3.2 材料表征
  • 3.3 低温AlN(LT-AlN)缓冲层生长方案
  • 3.4 高温AlN(HT-AlN)缓冲层生长方案
  • 3.5 组分渐变AlGaN/AlN 缓冲层生长方案
  • 3.6 超晶格缓冲层生长方案
  • 3.7 超晶格插入层生长方案
  • 3.8 本章小结
  • 4 Si 衬底上 AlGaN/GaN 异质结的生长
  • 4.1 HEMT 基本原理
  • 4.2 AlGaN/GaN 异质结的生长
  • 4.3 AlGaN/GaN 异质结表征特性
  • 4.4 本章小结
  • 5 总结
  • 致谢
  • 参考文献
  • 附录1 攻读学位期间发表论文目录
  • 相关论文文献

    • [1].Characterization of Interface Charge in NbAlO/AlGaN/GaN MOSHEMT with Different NbAlO Thicknesses[J]. Chinese Physics Letters 2015(01)
    • [2].High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chinese Physics Letters 2015(03)
    • [3].Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors[J]. Chinese Physics Letters 2015(12)
    • [4].基于第一性原理的AlGaN合金热电性质研究[J]. 人工晶体学报 2019(12)
    • [5].In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT[J]. Chinese Physics B 2020(04)
    • [6].Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chinese Physics Letters 2020(02)
    • [7].Theoretical analytic model for RESURF AlGaN/GaN HEMTs[J]. Chinese Physics B 2019(02)
    • [8].Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer[J]. Chinese Physics B 2019(04)
    • [9].Method of evaluating interface traps in Al_2O_3/AlGaN/GaN high electron mobility transistors[J]. Chinese Physics B 2019(06)
    • [10].AlGaN/GaN横向肖特基势垒二极管的仿真与制作[J]. 半导体技术 2018(05)
    • [11].Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research 2017(02)
    • [12].Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE[J]. Chinese Physics B 2017(06)
    • [13].Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication[J]. Chinese Physics Letters 2016(11)
    • [14].Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chinese Physics Letters 2016(06)
    • [15].Fabrication of GaN-Based Heterostructures with an InA1GaN/AlGaN Composite Barrier[J]. Chinese Physics Letters 2016(08)
    • [16].Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure[J]. Chinese Physics B 2016(06)
    • [17].Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor[J]. Chinese Physics B 2015(08)
    • [18].Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer[J]. Chinese Physics B 2013(10)
    • [19].蓝宝石衬底多层AlGaN薄膜透射谱研究[J]. 光学学报 2020(19)
    • [20].AlGaN Channel High Electron Mobility Transistors with an Al_xGa_(1-x)N/GaN Composite Buffer Layer[J]. Chinese Physics Letters 2015(07)
    • [21].Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters 2020(04)
    • [22].硅基AlGaN紫外大功率LED外延、芯片与封装的专利分析[J]. 中国照明电器 2019(08)
    • [23].Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors[J]. Chinese Physics B 2017(09)
    • [24].Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chinese Physics B 2017(09)
    • [25].Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric[J]. Chinese Physics Letters 2016(09)
    • [26].High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chinese Physics Letters 2017(01)
    • [27].Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE[J]. Chinese Physics B 2016(04)
    • [28].Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer[J]. Chinese Physics B 2014(03)
    • [29].A GaN AlGaN InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED[J]. Chinese Physics B 2014(04)
    • [30].An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chinese Physics B 2014(08)

    标签:;  ;  ;  ;  

    硅衬底上AlGaN/GaN异质结材料的生长研究
    下载Doc文档

    猜你喜欢