AlGaN/GaN异质结高电子迁移率晶体管的研制与特性分析

AlGaN/GaN异质结高电子迁移率晶体管的研制与特性分析

论文摘要

AlGaN/GaN异质结高电子迁移率晶体管(HEMT)在高温大功率方面有非常好的应用前景。但是,AlGaN/GaN HEMT的工艺技术还不成熟,干法刻蚀、肖特基接触、欧姆接触、钝化、空气桥技术等多个关键工艺技术还有待优化和提高。AlGaN/GaN HEMT结构的优化及器件温度特性和可靠性问题还需要更多的分析研究工作。本文即在此背景下对AlGaN/GaN HEMT的几个关键工艺技术,以及器件特性与工艺、结构、温度、应力的关系进行了广泛而且较深入的研究。主要研究工作和成果如下:1.利用自主产权的MOCVD系统成功的生长出了高特性的AlGaN/GaN异质结材料;对材料在变温条件下特性的变化进行了研究;生长出了不同层结构的AlGaN/GaN异质结材料,得到了最有利于提高器件特性的层结构。2.对自行研制的GaN、AlGaN材料进行了感应耦合等离子体(ICP)干法刻蚀研究;对刻蚀速率与上电极功率、自偏压、反应室压力、反应气体配比的关系进行了摸索,更好的控制了刻蚀过程;在保证刻蚀速率的前提下优化刻蚀工艺条件,并采用SiO2做掩模材料得到了最佳的有源区形貌;进行了GaN/Al0.27Ga0.73N选择性刻蚀研究,为AlGaN/GaN HEMT的槽栅刻蚀提供了依据;研究了表面氧化层造成的刻蚀延迟现象,提高刻蚀自偏压能有效的减小刻蚀延迟;采用AFM研究了刻蚀损伤现象,在相同刻蚀参数下Cl2/N2和Cl2/Ar两种刻蚀气体中Cl2/N2气体获得了较小的刻蚀粗糙度。3.对自行研制的AlGaN/GaN异质结材料上Ni/Au肖特基接触进行研究,得到了高特性的肖特基接触,满足了AlGaN/GaN HEMT栅肖特基的特性要求;采用I-V法和C-V法对GaN上的Ni/Au肖特基势垒高度和理想因子进行了计算;研究了采用不同条件的O2等离子体和不同溶液表面处理对AlGaN/GaN异质结肖特基特性的影响效果;得到了提高AlGaN/GaN异质结肖特基特性的最佳退火条件;结合表面处理和退火两个因素,得到了进一步提高AlGaN/GaN异质结肖特基特性的工艺条件,并采用变频C-V进行了验证;对表面氧化层和介质层对肖特基特性的影响进行了研究;分析了20-200℃之间AlGaN/GaN异质结肖特基特性的变化规律。4.研究并给出了完整的AlGaN/GaN HEMT工艺流程,对光刻、剥离、金属淀积、钝化、电镀等重要的工艺步骤进行了工艺条件优化,制造出了具有良好特性的蓝宝石衬底和SiC衬底AlGaN/GaN HEMT;优化了器件的层结构,采用i-AlGaN或i-GaN帽层结构提高了栅肖特基特性;研究了不同衬底器件的自热效应,SiC衬底器件在较大漏偏压下只有很小的饱和电流下降;研究了器件截止频率的影响因素,减小栅长、接触电阻、寄生电容能得到更好的频率特性。设计了多栅指的大尺寸AlGaN/GaN HEMT器件,对空气桥跨接工艺进行了摸索,成功实现了空气桥互连。5.对自行研制出的AIGaN/GaN HEMT的温度稳定性进行了研究,器件的输运特性退化主要原因是材料迁移率下降,采用变温C-V及TLM测量研究了器件特性退化原因;研究了N2气氛中不同退火温度和时间下器件主要参数的变化,得到了热退火对AlGaN/GaN HEMT栅肖特基特性提高的最优退火条件;研究了不同偏置高场应力下AlGaN/GaN HEMT特性退化情况,并与直流扫描电流崩塌现象进行了对比,直流扫描电流崩塌现象在紫外光照后立即恢复,而高场应力后器件特性的退化无法恢复。综上所述,本文在研制出高质量的AlGaN/GaN异质结材料的基础上,系统的解决了刻蚀、肖特基接触、钝化、电镀空气桥等关键工艺技术,成功的研制出了具有良好特性的AlGaN/GaN HEMT,并对器件的温度特性、高场应力可靠性进行了分析研究,取得了满意的结果。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • §1.1 GaN材料和AlGaN/GaN异质结微波功率器件的优势
  • §1.2 GaN电子器件与AlGaN/GaN HEMT研究
  • 1.2.1 GaN电子器件
  • 1.2.2 AlGaN/GaN HEMT关键工艺技术
  • 1.2.3 AlGaN/GaN HEMT研究现状
  • §1.3 基于AlGaN/GaN HEMT的应用研究进展
  • §1.4 本论文主要研究内容
  • 第二章 AlGaN/GaN异质结材料生长与特性
  • §2.1 材料生长方法和衬底选择
  • 2.1.1 几种常用的GaN材料生长方法
  • 2.1.2 衬底材料的选择
  • §2.2 AlGaN/GaN异质结材料
  • 2.2.1 AlGaN/GaN异质结二维电子气
  • 2.2.2 AlGaN/GaN异质结材料特性
  • 2.2.3 不同层结构AlGaN/GaN异质结
  • §2.3 本章小结
  • 第三章 GaN及AlGaN刻蚀工艺研究
  • §3.1 等离子体干法刻蚀
  • 3.1.1 常用的GaN干法刻蚀方法
  • 3.1.2 等离子体刻蚀机理和评估
  • §3.2 ICP刻蚀速率与刻蚀参数的关系
  • §3.3 HEMT有源区刻蚀形貌的研究
  • 3.3.1 光刻胶掩模
  • 2掩模技术'>3.3.2 SiO2掩模技术
  • 0.27Ga0.73N'>§3.4 选择性刻蚀GaN(帽层)/Al0.27Ga0.73N
  • §3.5 刻蚀延迟现象研究
  • §3.6 干法刻蚀损伤
  • §3.7 本章小结
  • 第四章 AlGaN/GaN异质结材料Ni/Au肖特基接触研究
  • §4.1 肖特基接触基本理论
  • 4.1.1 电流输运机制
  • 4.1.2 势垒高度和理想因子
  • 4.1.3 AlGaN/GaN异质结Ni/Au肖特基
  • §4.2 表面处理对肖特基特性影响研究
  • 2等离子体处理对肖特基特性影响'>4.2.1 O2等离子体处理对肖特基特性影响
  • 4.2.2 不同溶液表面处理
  • §4.3 退火对肖特基特性影响研究
  • §4.4 表面处理结合退火提高AlGaN/GaN异质结肖特基特性
  • 4.4.1 实验设计
  • 4.4.2 结果及其讨论
  • 4.4.3 结论
  • §4.5 材料缺陷和氧化层对肖特基特性的影响
  • §4.6 AlGaN/GaN异质结肖特基温度特性研究
  • §4.7 本章小节
  • 第五章 AlGaN/GaN HEMT的研制
  • §5.1 器件有源区隔离
  • 5.1.1 有源区隔离与掩模材料
  • 5.1.2 复合隔离技术
  • §5.2 光刻和金属淀积
  • 5.2.1 光刻与剥离
  • 5.2.2 金属接触
  • §5.3 表面钝化技术
  • §5.4 电镀加厚电极
  • §5.5 多指栅AlGaN/GaN HEMT研制
  • §5.6 AlGaN/GaN HEMT工艺流程
  • §5.7 本章小节
  • 第六章 AlGaNGaN HEMT直流与高频特性
  • §6.1 器件工作机理与结构优化
  • 6.1.1 主要器件参数和基本理论
  • 6.1.2 器件结构设计
  • §6.2 AlGaN/GaN HEMT器件特性
  • 6.2.1 直流特性
  • 6.2.2 频率特性
  • §6.3 本章小结
  • 第七章 AlGaN/GaN HEMT温度特性和高场应力研究
  • §7.1 变温C-V和TLM测量研究AlGaN/GaN HEMT温度特性
  • 7.1.1 实验准备和测量方法
  • 7.1.2 实验结果及分析
  • 7.1.3 结论
  • 2中高温退火研究'>§7.2 AlGaNGaN HEMT在N2中高温退火研究
  • 7.2.1 实验准备和测量方法
  • 7.2.2 试验结果及分析
  • 7.2.3 结论
  • §7.3 AlGaN/GaN HEMT高场应力退化及紫外光辐照的研究
  • 7.3.1 高场效应和热载流子
  • 7.3.2 高场应力实验
  • 7.3.3 实验结果及分析
  • 7.3.4 结论
  • §7.4 本章小节
  • 第八章 结束语
  • 致谢
  • 参考文献
  • 作者攻读博士期间的研究成果和参加的科研项目
  • 相关论文文献

    • [1].Characterization of Interface Charge in NbAlO/AlGaN/GaN MOSHEMT with Different NbAlO Thicknesses[J]. Chinese Physics Letters 2015(01)
    • [2].High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chinese Physics Letters 2015(03)
    • [3].Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors[J]. Chinese Physics Letters 2015(12)
    • [4].基于第一性原理的AlGaN合金热电性质研究[J]. 人工晶体学报 2019(12)
    • [5].In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT[J]. Chinese Physics B 2020(04)
    • [6].Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chinese Physics Letters 2020(02)
    • [7].Theoretical analytic model for RESURF AlGaN/GaN HEMTs[J]. Chinese Physics B 2019(02)
    • [8].Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer[J]. Chinese Physics B 2019(04)
    • [9].Method of evaluating interface traps in Al_2O_3/AlGaN/GaN high electron mobility transistors[J]. Chinese Physics B 2019(06)
    • [10].AlGaN/GaN横向肖特基势垒二极管的仿真与制作[J]. 半导体技术 2018(05)
    • [11].Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research 2017(02)
    • [12].Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE[J]. Chinese Physics B 2017(06)
    • [13].Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication[J]. Chinese Physics Letters 2016(11)
    • [14].Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chinese Physics Letters 2016(06)
    • [15].Fabrication of GaN-Based Heterostructures with an InA1GaN/AlGaN Composite Barrier[J]. Chinese Physics Letters 2016(08)
    • [16].Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure[J]. Chinese Physics B 2016(06)
    • [17].Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor[J]. Chinese Physics B 2015(08)
    • [18].Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer[J]. Chinese Physics B 2013(10)
    • [19].AlGaN Channel High Electron Mobility Transistors with an Al_xGa_(1-x)N/GaN Composite Buffer Layer[J]. Chinese Physics Letters 2015(07)
    • [20].Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters 2020(04)
    • [21].硅基AlGaN紫外大功率LED外延、芯片与封装的专利分析[J]. 中国照明电器 2019(08)
    • [22].Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors[J]. Chinese Physics B 2017(09)
    • [23].Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chinese Physics B 2017(09)
    • [24].Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric[J]. Chinese Physics Letters 2016(09)
    • [25].High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chinese Physics Letters 2017(01)
    • [26].Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE[J]. Chinese Physics B 2016(04)
    • [27].Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer[J]. Chinese Physics B 2014(03)
    • [28].A GaN AlGaN InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED[J]. Chinese Physics B 2014(04)
    • [29].An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chinese Physics B 2014(08)
    • [30].Low-resistance Ohmic contact on polarization-doped AlGaN/GaN heterojunction[J]. Chinese Physics B 2014(10)

    标签:;  ;  ;  ;  ;  ;  ;  

    AlGaN/GaN异质结高电子迁移率晶体管的研制与特性分析
    下载Doc文档

    猜你喜欢