论文题目: 视频图像中的运动人体检测和人脸识别
论文类型: 博士论文
论文专业: 电路与系统
作者: 李春明
导师: 李玉山
关键词: 计算机视觉,运动分割,人体检测,人脸检测,人脸识别
文献来源: 西安电子科技大学
发表年度: 2005
论文摘要: 本论文主要介绍了作者对运动目标检测与分析中一些算法的研究,主要包括了视频序列中运动目标的分割算法与外轮廓精确提取算法、非拥挤环境中的运动人体检测算法、视频序列中具有可分离性的多人脸检测算法、多角度不同表情下的人脸识别算法等。本文的目的是研究简单高效的算法,将运动人体的检测与分割、人脸检测与识别作为一系列的问题进行研究。本论文的主要研究成果列举如下:在研究已有算法的基础上,针对基于帧间差分方法对噪声敏感的问题,本文提出一种基于特征对象的的运动目标检测与外轮廓精确提取算法。特征对象由改进的KL变换计算得出,它不但具有运动对象的位置、形状等信息,而且与原图像序列的某一帧图像相对应。由此,可以进行运动对象的分割与提取。对刚体和非刚体运动对象,利用特征对象方法都只需3帧即可将其与背景分离。检测到特征对象后,将时间信息与空间信息相结合提取运动目标的精确位置及外轮廓。进一步,设计了基于KLT/Snake混合模型的运动目标外轮廓精确提取算法。实验结果表明,该算法计算速度快,能够正确的检测与分割复杂背景下的多运动目标,并且可精确提取运动目标的外轮廓。在研究现有人体检测算法的基础上,以简单高效为原则,设计了基于时间信息和人体形状信息相结合的非拥挤环境下人体检测算法。首先利用本文提出的特征对象法检测和分割运动目标,然后利用人体的形状信息区分运动目标中的人体与非人体,并利用连续多帧排除了目标间的短时互遮挡。算法的优点是运动目标检测准确,进行人体检测时不受人体角度的影响。而且,由于在运动目标检测时已对目标阴影进行了处理,因此提取的人体外形不受阴影的影响。分析和实验表明,该算法抗干扰能力强,可以准确检测到非拥挤场景中的多个运动人体。提出了将运动信息与边缘投影函数相结合的视频序列人脸检测与定位算法;针对经典Sobel算子检测到的边缘粗,对噪声敏感的问题,设计了双阈值Sobel算子进行边缘检测,该算子检测到的图像边缘清晰、细致、噪声少;提出了平方投影函数,该投影函数不但可区分均值相同的区域,而且可区分方差相同的区域。因为边缘图像携带了丰富的图像信息,且对光照条件的改变不敏感;投影函数可检测灰度值变化的区域;运动目标检测得到的图像背景简单,因此将运动信息、边缘函数与投影函数结合起来设计的人脸检测与定位算法简单实用。多角度不同表情下的人脸识别是人脸识别领域的一个难点。设计人脸识别算法时最重要的两个步骤一是设计合适的特征提取算法,另一个是设计合适的后期
论文目录:
独创性声明
关于论文使用授权的说明
中文摘要
ABSTRACT
第一章 绪论
1.1 计算机视觉及运动人体分析概述
1.2 国内外发展现状及研究热点
1.2.1 运动人体分析
1.2.2 人脸检测和识别
1.3 本论文研究内容和章节安排
第二章 运动目标分割及外轮廓提取
2.1 引言
2.2 运动目标分割算法研究
2.2.1 运动目标分割算法分类
2.2.2 帧间差分法原理及分析
2.3 多运动目标分割与外轮廓提取算法
2.3.1 算法原理及其结构框图
2.3.2 基于特征对象的运动目标检测算法
2.3.3 KLT\Snake 混合模型法精确提取目标外轮廓
2.3.4 实验结果分析
2.3.4.1 基于特征对象的运动目标检测
2.3.4.2 运动目标外轮廓的精确提取
2.3.5 算法小节
2.4 本章小节
第三章 非拥挤环境中的直立人体检测
3.1 引言
3.2 人体检测算法研究
3.2.1 假设
3.2.2 目标分类算法
3.3 室外环境下的独立人体检测
3.3.1 算法原理
3.3.2 实验分析
3.3.3 算法总结
3.4 本章小节
第四章 视频序列中的人脸检测与定位算法研究
4.1 引言
4.2 人脸检测与定位算法研究
4.3 视频序列中的人脸检测与定位
4.3.1 算法原理及过程简介
4.3.2 双阈值Sobel 算子检测图像边缘
4.3.3 平方投影函数
4.3.4 似人脸区域检测
4.3.5 人脸定位
4.3.6 实验结果及分析
4.3.7 算法总结
4.4 本章小节
第五章 多角度不同表情下的人脸识别
5.1 人脸识别算法研究
5.1.1 PCA 方法原理
5.1.2 其它子空间方法
5.1.3 小节
5.2 多角度不同表情下的人脸识别
5.2.1 算法原理
5.2.2 实验结果及分析
5.2.3 算法小节
结束语
致谢
攻博期间发表的主要论文
参考文献
发布时间: 2006-12-29
参考文献
- [1].基于头部特征提取的人体检测与跟踪及其应用[D]. 于海滨.浙江大学2007
- [2].基于计算机视觉的人体检测和人脸识别[D]. 林逸峰.吉林大学2012
- [3].基于单目视觉的人体检测和运动恢复[D]. 丁建浩.浙江大学2013
- [4].基于视频的人体检测与目标跟踪方法研究[D]. 倪洪印.吉林大学2014
- [5].基于时空分析和多粒度特征表示的人体检测方法研究[D]. 刘亚洲.哈尔滨工业大学2009
- [6].单目视频中人体运动建模及姿态估计研究[D]. 欧阳毅.浙江大学2012
- [7].无标记人体运动捕捉技术的研究[D]. 叶青.北京邮电大学2014
- [8].基于视觉系统的行人检测与跟踪方法研究[D]. 张苗辉.上海交通大学2013
- [9].基于图像的人体检测跟踪和人脸识别的研究[D]. 王守佳.吉林大学2013
- [10].大屏幕人机互动中若干关键技术研究[D]. 郭星.安徽大学2013