光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用

光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用

论文摘要

本文较为系统和全面的介绍了Lagrange有限元法、光滑粒子法和一种光滑粒子与有限元的耦合算法的基本原理及离散思想。详细讨论了这三种方法中的一些基本问题,如有限元法中的离散格式、滑移面问题,光滑粒子法中的离散格式、核函数、光滑长度等问题,以及耦合算法中有限元单元向光滑粒子的转换问题、光滑粒子与有限元交界面上的滑移计算和交界面附近光滑粒子的计算等问题。最后将耦合算法应用于一维应变波传播和高速碰撞计算,通过与有限元及纯光滑粒子法的对比计算说明耦合算法的特点和长处。 首先介绍了采用Lagrange有限元离散连续介质力学守恒方程的基本思想和计算步骤。讨论了有限元法在高速侵彻模拟计算中出现的滑移面问题和单元大畸变问题,给出了相应的处理方法。 然后利用插值理论,给出光滑粒子算法中函数及函数各阶导数的核估计,分析了光滑粒子法离散连续介质力学守恒方程组的基本方法及相应的离散形式。此外还讨论了光滑粒子法中的一些基本问题,比如核函数的性质、光滑长度的选取、人工粘性、守恒光滑法、本构关系以及该方法计算的主要步骤和时间步长选取等。 接着介绍了一种光滑粒子与有限元的耦合算法,这种算法在初始时刻用有限元方法建模,随着变形的增大,大变形区域的有限元单元将自动转换成光滑粒子进行模拟计算,从而保证计算的正常进行。讨论和分析了耦合算法中的三个主要难点,有限元单元向光滑粒子的转换问题、光滑粒子与有限元交界面上的滑移计算问题和交界面附近光滑粒子的计算问题,提出了解决的方法并给出了全部算式。 粒子搜索算法在耦合算法和光滑粒子法中都起着非常重要的作用,直接决定了计算效率,以此为目标,利用核函数影响域的局域性,提出了一种搜索简便、计算效率获得很大提高的分区搜索算法。边界的确定也是耦合算法与光滑粒子法的一个难点。本文通过引入粒子边界圆的概念,提出了依据边界圆的覆盖方式区分边界点和内点,有效地解决了边界难以确定的问题。 将耦合算法应用于一维应变波计算是冲击力学数值方法研究中的重要内容之一。一维应变波算例的结果显示,耦合算法完全可以用于弹塑性波传播和演化规律的数值模拟,其精度与有限元法和纯光滑粒子法相当,但其计算效率要比光滑粒子法高。这为材料和结构冲击响应的数值方法研究积累了经验,拓宽了耦合算法的应用范围。 最后本文研究了二维轴对称条件下光滑粒子法的离散思想、方法和全部算式,并将耦合算法成功应用于高速碰撞和侵彻贯穿模拟计算。通过Taylor碰撞的考核计算,验证了耦合算法计算高速碰撞和大变形问题的能力和精度。在高速碰撞和侵彻贯穿计算中,比较了有限元法、纯光滑粒子法和耦合算法的计算结果,讨论了三种

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • §1.1 引言
  • §1.2 有限单元法概况
  • §1.3 无网格方法
  • §1.3.1 无网格方法的发展概况
  • §1.3.2 几种无网格近似方案
  • §1.4 光滑粒子法及其发展
  • §1.5 光滑粒子法与有限元的耦合算法
  • §1.6 本文的研究目标和主要工作
  • 第二章 冲击动力学问题的有限元法研究
  • §2.1 基本方程和有限元离散
  • §2.2 滑移线处理技术
  • §2.3 计算流程
  • §2.4 本章小结
  • 第三章 光滑粒子法
  • §3.1 核估计
  • §3.2 方程组的离散
  • §3.3 核函数
  • §3.3.1 核函数的选取
  • §3.3.2 光滑长度h
  • §3.4 人工粘性
  • §3.5 守恒光滑法
  • §3.6 本构关系
  • §3.7 光滑粒子法的时间积分
  • §3.7.1 计算步骤
  • §3.7.2 时间步长
  • §3.8 本章小结
  • 第四章 光滑粒子法与有限元的耦合算法
  • §4.1 有限元单元向光滑粒子的转换
  • §4.2 界面的滑移计算
  • §4.2.1 光滑粒子与有限元交界面上的滑移计算
  • §4.2.2 不同材料间接触面的滑移计算
  • §4.3 交界面附近光滑粒子的计算
  • §4.4 计算流程
  • §4.5 本章小结
  • 第五章 粒子搜索和边界的定义
  • §5.1 搜索算法
  • §5.2 边界的定义
  • §5.3 本章小结
  • 第六章 一维应变波计算中的耦合算法
  • §6.1 一维有限元方法及计算流程
  • §6.1.1 基本方程
  • §6.1.2 有限元法的计算流程
  • §6.2 一维光滑粒子法及计算流程
  • §6.2.1 基本方程
  • §6.2.2 光滑粒子法中守恒方程组的离散格式
  • §6.2.3 光滑粒子法的计算流程
  • §6.3 一维耦合算法
  • §6.3.1 有限元单元向光滑粒子的转换
  • §6.3.2 交界面附近光滑粒子的计算
  • §6.3.3 有限元与光滑粒子交界面的处理
  • §6.3.4 耦合算法的计算流程
  • §6.4 人工粘性和通量修正输运法
  • §6.5 脉冲载荷下板中一维弹性应变波的传播
  • §6.6 脉冲载荷下板中一维弹塑性应变波的传播
  • §6.7 本章小结
  • 第七章 高速碰撞现象的数值模拟
  • §7.1 轴对称问题中基本方程的光滑粒子法离散
  • §7.2 Taylor碰撞
  • §7.3 高速碰撞问题的二维计算
  • §7.4 本章小结
  • 第八章 全文总结及展望
  • §8.1 全文总结
  • §8.2 对本课题未来研究工作的展望
  • 参考文献
  • 攻读博士学位期间发表的论文
  • 相关论文文献

    • [1].基于有限元法的电机噪声分析及优化[J]. 电机技术 2020(03)
    • [2].基于有限元法对多自由度剑麻收割机的分析与实验[J]. 农机化研究 2018(05)
    • [3].二维光滑边域有限元法在弹性力学中的应用研究[J]. 西北工业大学学报 2017(01)
    • [4].基于ABAQUS标准扩展有限元法的不良裂缝构型影响分析[J]. 东北大学学报(自然科学版) 2020(11)
    • [5].基于广义扩展有限元法的裂纹追踪分析[J]. 福建建设科技 2015(01)
    • [6].“有限元法”的发展与应用[J]. 甘肃科技 2014(01)
    • [7].广义扩展有限元法及其在裂纹扩展分析中的应用[J]. 计算力学学报 2012(03)
    • [8].基于能量有限元法的损伤板结构振动分析[J]. 振动与冲击 2017(11)
    • [9].浅谈小波有限元法的研究现状及发展趋势[J]. 科技与创新 2017(17)
    • [10].基于扩展有限元法的裂纹扩展数值模拟及程序实现[J]. 直升机技术 2016(03)
    • [11].试析有限元法于机械设计中的运用[J]. 中国新技术新产品 2015(23)
    • [12].自适应有限元法及其分析应用[J]. 机械工程与自动化 2013(06)
    • [13].基于扩展有限元法的弹塑性裂纹扩展研究[J]. 南京工业大学学报(自然科学版) 2014(04)
    • [14].非线性问题的有限元法[J]. 武汉理工大学学报 2010(15)
    • [15].基于有限元法的200T车轴结构轻量化设计[J]. 新余学院学报 2020(02)
    • [16].工学研究生学位课《有限元法》的教学与改革实践[J]. 中国电力教育 2019(04)
    • [17].基于移动有限元法的裂纹梁振动分析[J]. 动力学与控制学报 2017(02)
    • [18].扩展有限元法及其在钢筋混凝土结构中的应用综述[J]. 水利水电科技进展 2015(03)
    • [19].有限元法的基本思想与发展过程[J]. 机械管理开发 2009(02)
    • [20].有限元法在机械设计中的应用[J]. 杨凌职业技术学院学报 2009(03)
    • [21].浅谈有限元法在机械设计中的应用[J]. 山东工业技术 2017(20)
    • [22].研究生有限元法课程的教学改革设想[J]. 课程教育研究 2014(35)
    • [23].有限元法及应用状况[J]. 科技创新导报 2012(31)
    • [24].快开压力容器的有限元法研究现状[J]. 甘肃科技 2011(02)
    • [25].一步有限元法在预测产品成形性中的应用[J]. 中国高新技术企业 2009(04)
    • [26].在三维结构分析问题中合适的离散-连续有限元法(英文)[J]. 北京建筑工程学院学报 2009(02)
    • [27].在三维结构分析问题中合适的离散-连续有限元法(续)(英文)[J]. 北京建筑工程学院学报 2009(03)
    • [28].时域有限元法在计算电磁问题上的应用及发展[J]. 电波科学学报 2008(06)
    • [29].焊管成型过程有限元法研究的进展[J]. 钢管 2008(02)
    • [30].有限元法中间构形初始解预示的Laplace-Beltrami方程法[J]. 工程力学 2020(06)

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用
    下载Doc文档

    猜你喜欢