在ATLAS实验中利用top夸克对单轻子道事例对w玻色子极化和top夸克对自旋关联的研究

在ATLAS实验中利用top夸克对单轻子道事例对w玻色子极化和top夸克对自旋关联的研究

论文摘要

The particle physics came out and developed with the exploration of the composition of the nature world. The Standard Model which was developed in early1970s pro-vides us a comprehensive and systematic theory to understand the particle physics. Many of the prophecies from the Standard Model have been proved by the experi-ments. Although the Standard Model has made such great successes, there are still many question need to be solved.The LHC, which is the largest high energy collider up to now, is constructed to provide the physics which can be used to test the Standard Model, and find the Higgs particle. It has6detectors, which are ATLAS, CMS, ALICE, LHCb, LHCf and TO-TEM. Accurate study on the final reconstructed object performance is done to support all physics study. This thesis firstly presents my work on the electron identification efficiency study at ATLAS, which is used to improve the agreement of the electron performance between real data and simulated Monte Carlo.The LHC is a real top quark factory, as about8million top quark pairs will be produced per year. The top quark physics is an ideal physics channel to test the Standard model and find new physics, as the large mass and long life of the top quark.This thesis presents the measurements of the helicity fractions of the W boson and ttbar spin correlation in top quark pair semi-lepton decay, using the4.7fb-1data collected by the ATLAS experiment at LHC with proton-proton collision at the center of mass equal to7TeV. In those analyses, I focus on the tt semi-leptonic channel (one W from top quark decays into leptons and another W from the second top quark decays into two light quarks). After the event selection, to further suppress W+jets and multi-jet backgrounds, I further require two jets to be tagged as bottom quarks. A complete reconstruction algorithm of the top quark pair system is described in the thesis.The physics variables are then calculated using the fully reconstructed tt sys-tem. The distributions are obviously biased by the hadronization/showering and de-tector effects, which are modelled by the matrices named the response matrices. The response matrices are calculated from Monte Carlo simulations. The unfolded angular distributions of final particles are then fitted by theory function to extract the W helic-ity fractions and spin correlation.By using an unfolding method based on the migration probability from truth bin to reconstructed bin, the distributions of the angle are unfolded back to their parton level. After fitting the distributions with theory function, the W helicity fractions are measured: tt spin correlation differential result is also measured by using the unfolding method. Both of these two measurement results have good agreements with the Standard Model within the statistical and systematic errors.

论文目录

  • TABLE OF CONTENTS
  • LIST OF FIGURES
  • Abstract
  • Chapter 1. Introduction
  • Chapter 2. The Standard Model and top quark physics
  • 2.1. The particle physics
  • 2.2. The Standard Model
  • 2.2.1. The fundamental particles
  • 2.2.2. The electroweak interaction
  • 2.2.3. The quantum chromodynamics
  • 2.3. The top quark physics
  • 2.3.1. The top quark Production
  • 2.3.1.1. The single top quark production
  • 2.3.1.2. The top quark pair production
  • 2.3.2. The top quark decay
  • 2.3.3. The top quark properties
  • 2.3.3.1. The W polarization
  • 2.3.3.2. The tt spin correlation
  • Chapter 3. The LHC and ATLAS experiment
  • 3.1. The LHC
  • 3.2. The ATLAS experiment
  • 3.2.1. The magnet system
  • 3.2.2. The inner detector
  • 3.2.3. The calorimeters
  • 3.2.3.1. The electromagnetic calorimeter
  • 3.2.3.2. The hadronic Calorimeters
  • 3.2.4. The muon spectrometer
  • 3.2.4.1. The precision-measurement tracking chambers
  • 3.2.4.2. The trigger chambers
  • 3.2.5. Trigger and Data Acquisition
  • Chapter 4. The collision data and Monte Carlo samples
  • 4.1. The collision data
  • 4.2. The MC samples
  • Chapter 5. The electron identification efficiency measurement
  • 5.1. The measurement motivation
  • 5.2. The identification criteria
  • 5.3. The measurement method-Tag and Probe method
  • 5.4. The measurement results-Efficiency and Scale factor
  • 5.5. The trigger dependence of electron id efficiency measurement
  • 5.6. The pile-up dependence of the ID efficiency measurement
  • 5.7. Summary
  • Chapter 6. The Objects selection
  • 6.1. Electron
  • 6.1.1. The electron identification
  • 6.1.2. The electron trigger
  • 6.1.3. The offline electron selection
  • 6.1.4. The electron efficiencies and scale factors
  • 6.1.5. The electron energy scale and resolution smearing
  • 6.2. Muon
  • 6.2.1. The muon identification
  • 6.2.2. The muon trigger
  • 6.2.3. The offline muon selection
  • 6.2.4. The muon momentum scale and resolution smearing
  • 6.2.5. The muon efficiencies and scale factors
  • 6.3. Jet
  • 6.3.1. The jet calibration
  • 6.3.2. The jet energy scale and uncertainties
  • 6.3.3. The jet energy resolution
  • 6.3.4. The jet quality and pile-up rejection
  • 6.3.5. The Jet reconstruction efficiency
  • 6.4. The b-tagging of jet
  • 6.5. The ETmiss Description and Performance
  • Chapter 7. The event reconstruction
  • 7.1. The event selection
  • 7.2. The event reconstruction
  • 7.3. The W+jets background estimation
  • 7.4. The QCD background estimation
  • 7.5. The Event yield and control plots
  • Chapter 8. The Unfolding method
  • 8.1. Introduction
  • 8.2. The response matrix
  • 8.3. The iteration method
  • Chapter 9. The W boson polarization measurement
  • 9.1. The scan method in unfolding technique
  • 9.2. The validation of the unfolding technique
  • 9.2.1. The binning choice
  • 9.2.2. The effects of iteration
  • 9.2.3. The un-bias test
  • 9.2.4. The I/O test
  • 9.2.5. The closure test based on SM matrix
  • 9.3. The differential measurement
  • 9.4. The inclusive measurement
  • 9.5. The systematic uncertainties
  • Chapter 10. The ttbar spin correlation measurement
  • 10.1. The validation of the unfolding technique
  • 10.1.1. The binning choice
  • 10.1.2. The effects of the iteration
  • 10.1.3. The un-bias test
  • 10.1.4. The I/O test
  • 10.1.5. The closure test based on SM matrix
  • 10.2. The differential measurement
  • Chapter 11. Summary and outlook
  • BIBLIOGRAPHY
  • ACKNOWLEDGEMENTS
  • LIST OF PUBLISHED PAPERS
  • 学位论文评阅及答辩情况表
  • 相关论文文献

    • [1].Brainnetome Atlas:A new map of human brain[J]. Science Foundation in China 2016(04)
    • [2].Atlas空压机进口备件的国产化改造[J]. 冶金设备 2017(02)
    • [3].Atlas钛缆治疗粉碎性髌骨骨折的应用研究[J]. 现代医用影像学 2017(02)
    • [4].Lithospheric structure in NW of Africa:Case of the Moroccan Atlas Mountains[J]. Geodesy and Geodynamics 2015(06)
    • [5].Atlas钛缆治疗粉碎性髌骨骨折40例临床分析[J]. 现代医院 2015(08)
    • [6].身怀绝技的Atlas机器人[J]. 科学大众(中学生) 2019(Z2)
    • [7].明年的重磅炸弹 VOLKSWAGEN ATLAS[J]. 汽车知识 2016(12)
    • [8].大块头有大智慧 试驾上汽大众途昂[J]. 汽车之友 2017(09)
    • [9].ATLAS阿特拉斯轮胎品牌上海震撼发布[J]. 轿车情报 2017(05)
    • [10].Atlas Design: Giving New Life to Chinese Crafts[J]. China Today 2017(05)
    • [11].ATLAS AM520[J]. 汽车与运动 2017(09)
    • [12].如何运用ATLAS.ti分析定性数据和发掘研究主题[J]. 社会工作 2017(06)
    • [13].关于逆天的Atlas拟人机器人论述[J]. 中国战略新兴产业 2017(04)
    • [14].可以搬运货物的机器人[J]. 少年电脑世界 2016(05)
    • [15].Discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC[J]. Science China(Physics,Mechanics & Astronomy) 2014(10)
    • [16].坚守创新:“百年”仪器品牌的执着追求——访锡莱亚太拉斯(SDL Atlas)中国区总经理简志光[J]. 中国纤检 2018(09)
    • [17].Atlas风机防喘振辅助设计及应用[J]. 自动化技术与应用 2012(02)
    • [18].基于ATLAS语言的无线电高度表测试研究[J]. 仪表技术 2010(02)
    • [19].Atlas空压机启动时频繁跳车处理经验总结[J]. 深冷技术 2010(05)
    • [20].基于MapGIS/Erdas/Atlas3D的三维地图的制作方法及其比较[J]. 地矿测绘 2010(03)
    • [21].基于ATLAS转换语言的模型转换初探[J]. 河北工程大学学报(自然科学版) 2010(04)
    • [22].基于Atlas语言实现模型转换技术的研究[J]. 现代电子技术 2009(20)
    • [23].SDL Atlas在ITMA ASIA+CITME 2018推出令人振奋的创新技术[J]. 中国纤检 2018(12)
    • [24].康丽数码发布新一代成衣数码印花机Kornit Atlas[J]. 网印工业 2019(01)
    • [25].波士顿动力公司Atlas[J]. 高科技与产业化 2017(11)
    • [26].ATLAS程序语言结构分析[J]. 航空维修与工程 2016(02)
    • [27].Atlas:用户肖像临摹者[J]. 成功营销 2014(11)
    • [28].Prospectives of the hadron program in ATLAS[J]. 中国物理C 2010(09)
    • [29].Analytical modeling and ATLAS simulation for a homojunction LED in the mid-infrared spectral region[J]. Optoelectronics Letters 2009(06)
    • [30].基于ATLAS语言的航空自动测试系统的设计与实现[J]. 信息技术与信息化 2008(03)
    在ATLAS实验中利用top夸克对单轻子道事例对w玻色子极化和top夸克对自旋关联的研究
    下载Doc文档

    猜你喜欢