本文主要研究内容
作者王巧霞,王玉敏,马日,闫冰(2019)在《Accurate all-electron calculation on the vibrational and rotational spectra of ground states for O2 and its ions》一文中研究指出:The potential energy curves, spectroscopic constants, and low-lying vibration–rotation levels of ground-state O2 and its cation O2+ and anion O2- were calculated with the explicitly correlated multireference configuration interaction method.The zeroth-order reference wavefunction was treated with the complete active space multiconfigurational self-consistent field method, in which the active space was carefully selected, and an additional molecular orbital πu was added into the full valence active space.The electron correlation of the 1s core in the oxygen atom was considered in the computations.The Davidson correction on molecular energy was considered to account for higher electron excitation.The relativistic effects, including the scalar relativistic effect and spin–orbit coupling, were considered in the computation of potential energy curves.These physical effects on the spectroscopic constants were examined.The low-lying levels of vibration–rotation spectra of O2 and its ions were determined based on the computed potential energy curves.Comparisons with available experiments were made and excellent agreement was obtained for the vibrational and rotational parameters.The spectroscopic constants and vibration–rotation spectrum of O2-, which is sparse in experiments, were provided.Our study will shed some light on further theoretical and experimental studies on these simple but important molecular systems.
Abstract
The potential energy curves, spectroscopic constants, and low-lying vibration–rotation levels of ground-state O2 and its cation O2+ and anion O2- were calculated with the explicitly correlated multireference configuration interaction method.The zeroth-order reference wavefunction was treated with the complete active space multiconfigurational self-consistent field method, in which the active space was carefully selected, and an additional molecular orbital πu was added into the full valence active space.The electron correlation of the 1s core in the oxygen atom was considered in the computations.The Davidson correction on molecular energy was considered to account for higher electron excitation.The relativistic effects, including the scalar relativistic effect and spin–orbit coupling, were considered in the computation of potential energy curves.These physical effects on the spectroscopic constants were examined.The low-lying levels of vibration–rotation spectra of O2 and its ions were determined based on the computed potential energy curves.Comparisons with available experiments were made and excellent agreement was obtained for the vibrational and rotational parameters.The spectroscopic constants and vibration–rotation spectrum of O2-, which is sparse in experiments, were provided.Our study will shed some light on further theoretical and experimental studies on these simple but important molecular systems.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Physics B的王巧霞,王玉敏,马日,闫冰,发表于刊物Chinese Physics B2019年07期论文,是一篇关于,Chinese Physics B2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Physics B2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。