可积哈密顿系统及其代数结构

可积哈密顿系统及其代数结构

论文摘要

本文研究内容主要涉及可积系统的四个方面:与连续谱问题相联系的无穷维和有限维Hamilton系统;与离散谱问题相联系的Hamilton系统和无穷守恒律;可积耦合系统零曲率方程的代数结构;非线性方程族的Darboux变换和精确解.第一章,作为与本文相关的研究背景,简要综述了孤立子理论的产生和发展过程,特别针对性地介绍了近年来国内外在可积系统方面的研究成果和发展状况.第二章,从一个广义Kaup-Newell谱问题出发,导出广义Kaup-Newell方程族,并利用迹恒等式建立该方程族的双Hamilton结构.借助非线性化方法,将广义Kaup-Newell谱问题非线性化为有限维完全可积的Hamilton系统,进而利用可换流的对合解给出孤子方程族解的对合表示.利用李代数的半直和思想构造了广义Kaup-Newell方程族的可积耦合系统,并得到了耦合系统的拟Hamilton结构.第三章,从一个离散谱问题出发,导出离散的正负发展方程族,利用离散形式的迹恒等式建立了这两个方程族的双Hamilton结构,并进一步获得了相应方程族的无穷守恒律.第四章,基于一种特殊的李代数半直和,通过定义Lax算子的交换关系,研究了连续和离散耦合系统的零曲率表示的代数结构,并将这种结构分别应用到AKNS方程族和Volterra离散族所生成的等谱族的τ—对称代数.第五章,从另一个广义Kaup-Newell谱问题出发,导出了相应的非线性发展方程族,并进一步借助Lax对的规范变换,统一地构造了整个方程族的Darboux变换和精确解.

论文目录

  • 中文摘要
  • 英文摘要
  • 第一章 绪论
  • 1.1 孤立子的产生和发展
  • 1.2 非线性可积系统
  • 1.3 孤立子方程的求解
  • 1.4 论文的主要工作和创新点
  • 第二章 广义KN方程族的Hamilton结构及可积耦合
  • 2.1 连续系统的基本概念
  • 2.2 广义KN方程族及其无穷维Hamilton结构
  • 2.3 非线性化与有限维Hamilton系统的可积性
  • 2.4 可积耦合系统及其拟Hamilton结构
  • 第三章 一类离散方程族的Hamilton结构与无穷守恒律
  • 3.1 离散系统的基本概念
  • 3.2 正方程族和双Hamilton结构
  • 3.3 负方程族和双Hamilton结构
  • 3.4 离散方程族的无穷守恒律
  • 第四章 可积耦合系统的代数结构
  • 4.1 连续可积耦合系统的代数结构
  • 4.1.1 连续系统的可积耦合
  • 4.1.2 向量场的李代数
  • 4.1.3 耦合零曲率方程的代数结构
  • 4.1.4 耦合AKNS族的(?)—对称代数
  • 4.2 离散可积耦合系统的代数结构
  • 4.2.1 离散系统的可积耦合
  • 4.2.2 耦合零曲率方程的代数结构
  • 4.2.3 耦合Volterra族的(?)—对称代数
  • 第五章 广义KN方程族Darboux变换和精确解
  • 5.1 谱问题的规范变换和发展方程族
  • 5.2 Darboux变换的构造
  • 5.3 Darboux变换的应用
  • 参考文献
  • 攻读博士期间发表的学术论文
  • 致谢
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  

    可积哈密顿系统及其代数结构
    下载Doc文档

    猜你喜欢