TiC增强相对Mo合金力学性能与显微组织的影响

TiC增强相对Mo合金力学性能与显微组织的影响

论文摘要

碳化物增强钼合金由于具有良好的室温强韧性、高温强度和高的再结晶抗力等优良的力学性能,可在高温、高应力等条件下稳定服役,是应用于新一代高速飞行器动力系统、火箭推进器及其供能系统的一种颇具发展潜力的耐热钼材。本论文在Mo-Ti合金的基础上,引入TiC增强相,探索TiC的添加对Mo-Ti合金力学性能及显微组织的影响,同时对碳化物相在钼基体中的强化作用进行讨论。由此,本实验采用粉末冶金方法制备TiC成分在0.05-0.25wt.%及2-12wt.%内的Mo-Ti-TiC合金,测试合金的室温及800℃下的拉伸性能,并对合金的显微组织形貌进行表征。研究结果如下:(1)微量TiC(0.05-0.25wt.%)的添加使得Mo-Ti合金的强度得到了提高。其中,TiC的添加量为0.05wt.%时,Mo-Ti-TiC合金的强度最高,强度较Mo-Ti合金提高31.7%。(2)微量TiC在Mo-Ti-(0.05~0.25wt.%)TiC合金中形成0.5~1.5μm的(Ti,Mo)xOyCz的第二相粒子,起到净化晶界氧及细化晶粒作用,合金的晶粒尺寸随着TiC添加量的增加而降低。(3)高TiC含量(2~12wt.%)的Mo-Ti-TiC合金具有更为良好的力学性能,当TiC含量为4wt.%时,1920℃烧结的Mo-Ti-TiC合金的室温及800℃拉伸强度均达到最高,分别为700MPa和476MPa。800℃下拉伸,Mo-Ti-2TiC和Mo-Ti-4TiC合金存在明显屈服现象,屈服强度分别为325MPa及410MPa, TiC含量较高的Mo-Ti-6TiC和Mo-Ti-8TiC合金无屈服现象,为典型的脆断。(4)随着TiC含量的提高,Mo-Ti-(2~12wt.%)TiC合金中的碳化物相数量增多,尺寸变大,从而使得合金的晶粒尺寸降低,硬度提高。

论文目录

  • 摘要
  • ABSTRACT
  • 目录
  • 第一章 文献综述
  • 1.1 前言
  • 1.2 钼的性能及其应用
  • 1.2.1 钼的物理性质
  • 1.2.2 钼的化学性质
  • 1.2.3 钼的力学性能
  • 1.2.4 钼的应用
  • 1.2.5 钼性能上的不足
  • 1.3 钼合金及其应用
  • 1.4 碳化物增强钼合金
  • 1.4.1 碳化物增强钼合金的性能研究
  • 1.4.2 碳化物弥散颗粒与基体钼之间相互作用机理的研究
  • 1.4.3 高碳化物含量钼-碳化物复合材料
  • 1.4.4 应用前景
  • 1.5 本论文的指导思想与实验方案
  • 第二章 实验方法
  • 2.1 实验原料
  • 2.3 实验过程
  • 2-TiC粉末制备'>2.3.1 Mo-TiH2-TiC粉末制备
  • 2.3.2 压制成形
  • 2.3.3 低温预烧结
  • 2.3.4 高温烧结
  • 2.3.5 性能检测
  • 第三章 微量TiC对Mo-Ti合金性能与显微组织的影响
  • 3.1 微量TiC对Mo-Ti合金相对密度及拉伸性能的影响
  • 3.2 微量TiC对Mo-Ti合金显微组织结构的影响
  • 3.2.1 晶粒度
  • 3.2.2 第二相粒子
  • 3.3 本章小结
  • 第四章 高TiC含量Mo-Ti-TiC合金力学性能及显微组织的研究
  • 4.1 高TiC含量Mo-Ti-TiC合金的力学性能
  • 4.1.1 Mo-Ti-TiC合金室温拉伸强度及拉伸断口分析
  • 4.1.2 Mo-Ti-TiC合金800℃拉伸强度
  • 4.1.3 Mo-Ti-TiC合金室温硬度
  • 4.2 高TiC含量对Mo-Ti-TiC合金显微组织结构的影响
  • 4.2.1 碳化物增强相颗粒形貌
  • 4.2.2 碳化物增强相成分分析
  • 4.2.3 晶粒组织
  • 4.2.4 析出相
  • 4.3 本章小结
  • 第五章 结论
  • 参考文献
  • 致谢
  • 攻读硕士学位期间主要的研究成果
  • 相关论文文献

    • [1].高熵合金的制备方法及其应用进展[J]. 航空制造技术 2019(22)
    • [2].低合金钛卷应用与展望[J]. 科技创新与应用 2019(36)
    • [3].各类高熵合金的研究进展[J]. 功能材料 2019(12)
    • [4].高熵合金抗氧化性能研究现状及展望[J]. 材料导报 2019(S2)
    • [5].镁铝钆合金在空气中的氧化与燃烧[J]. 稀有金属材料与工程 2019(12)
    • [6].含稀土铂基合金的性能研究进展[J]. 贵金属 2019(S1)
    • [7].高熵合金的力学性能及功能性能研究进展[J]. 材料热处理学报 2020(01)
    • [8].影响6005A合金剥落腐蚀性能的因素研究[J]. 铝加工 2020(01)
    • [9].高熵合金的耐蚀性与耐磨性研究进展[J]. 热加工工艺 2020(06)
    • [10].轻质高熵合金的研究进展与展望[J]. 稀有金属材料与工程 2020(04)
    • [11].高熵合金的热处理综述[J]. 材料热处理学报 2020(05)
    • [12].国内高熵合金制备技术的发展现状[J]. 科技经济导刊 2020(10)
    • [13].高熵合金激光选区熔化研究进展[J]. 钢铁研究学报 2020(06)
    • [14].浅析合金成分及时效工艺对6082合金的影响[J]. 福建冶金 2020(04)
    • [15].多组元高熵合金制备方法的研究现状[J]. 有色金属工程 2020(06)
    • [16].高熵合金——打破传统的新型高性能多主元合金[J]. 中国资源综合利用 2020(08)
    • [17].微波消解-电感耦合等离子体原子发射光谱法测定718合金中铝钴钛钒磷钨六种元素[J]. 湖南有色金属 2020(04)
    • [18].增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报 2020(17)
    • [19].立方晶体结构高熵合金在低温条件下的力学行为研究进展[J]. 稀有金属材料与工程 2020(09)
    • [20].高熵合金制备及热处理工艺研究进展[J]. 金属热处理 2020(10)
    • [21].轻质高熵合金的研究现状与发展趋势[J]. 材料导报 2020(19)
    • [22].轻质高熵合金的研究现状[J]. 材料导报 2020(21)
    • [23].热处理对Mg-11Gd-3Y-0.6Ca-0.5Zr合金显微组织和腐蚀行为的影响[J]. 材料导报 2020(20)
    • [24].高熵合金材料研究进展(英文)[J]. Science China Materials 2018(01)
    • [25].高熵合金的研究进展[J]. 中国重型装备 2017(03)
    • [26].Al-5.0Zn-3.0Mg-1.0Cu-0.1Zr合金的淬火敏感性[J]. 中南大学学报(自然科学版) 2017(09)
    • [27].体内外实验评估Mg-6Zn合金对肠上皮细胞紧密连接的影响(英文)[J]. Transactions of Nonferrous Metals Society of China 2015(11)
    • [28].高熵合金制备方法进展[J]. 热加工工艺 2014(22)
    • [29].4J29合金金相组织和力学性能的研究[J]. 机电元件 2015(04)
    • [30].高压处理对Cu-50.84Cr-0.48Al合金热扩散系数和热膨胀性能的影响[J]. 稀有金属 2013(05)

    标签:;  ;  ;  ;  ;  ;  

    TiC增强相对Mo合金力学性能与显微组织的影响
    下载Doc文档

    猜你喜欢