几种Calix“4”arene-crown衍生物合成及其萃取性能和机理研究

几种Calix“4”arene-crown衍生物合成及其萃取性能和机理研究

论文摘要

溶剂萃取是一种重要的单元操作,具有简便性和有效性等特点,得到了广泛推广与应用。萃取剂的选择在溶剂萃取中占有重要地位。杯[4]-冠-6(Calix[4]arene-crown)是第三代超分子识别试剂Calix[4]arene的衍生物,同时含有杯芳烃和冠醚两种主体分子的亚单元,两者之间以两个或多个原子相连,具有与单个杯芳烃或冠醚不同的性质和对客体更加优越的络合和识别能力。基于Calix[4]arene-crown对于Cs(Ⅰ)的识别性能,合成与表征了三种未见报道的Calix[4]arene-crown衍生物:25,27-二(正壬氧基)杯[4]芳烃-26,28-冠-6(NonCalix[4]C6)、25,27-二(正癸氧基)杯[4]芳烃-26,28-冠-6(DecCalix[4]C6)和25,27-二(正十二烷氧基)杯[4]芳烃-26,28-冠-6(DodCalix[4]C6)。考察了该类衍生物对发热元素Cs(Ⅰ)及十余种共存元素的萃取性能,研究了Cs(Ⅰ)的萃取机理,探索了Cs(Ⅰ)和Sr(Ⅱ)的共萃取行为,为从酸性模拟高放废液(HLW)中有效萃取分离Cs(Ⅰ)提供了实验与理论依据。其主要内容如下:以五步法合成了NonCalix[4]C6、DecCalix[4]C6和DodCalix[4]C6,通过元素分析、FT-IR、ESI-MS、1HNMR和TG-DSC等手段进行了表征。合成的三种杯[4]-冠-6衍生物的取代基均为长链烷烃,基于长链烷烃的推电子作用效应,发现在其合成过程中的取代位置会发生变化。探索了取代基为长链烷烃时Calix[4]arene-crown衍生物合成技术路线,考察了影响柱色谱分离纯化Calix[4]arene-crown的若干因素。研究了NonCalix[4]C6. DecCalix[4]C6和DodCalix[4]C6对Cs(Ⅰ)及十余种共存元素的萃取性能,考察了硝酸浓度、接触时间和温度等因素对萃取分配比的影响,结果表明:硝酸浓度对萃取过程有明显影响,在被试验的0.4-5.0M HNO3浓度范围内,Calix[4]arene-crown衍生物对Cs(Ⅰ)有明显的分子识别与高选择性,并与Cs(Ⅰ)的配位作用和以氢键方式与HNO3的缔合作用构成了竞争反应,使得Calix[4]arene-crown萃取Cs(Ⅰ)的分配比先是随着硝酸浓度的增加而明显增加,此后又逐渐降低,在硝酸浓度为3.0M或4.0M时Cs(Ⅰ)的分配比最大;被试验的十余种共存元素中,除Rb(Ⅰ)与Cs(Ⅰ)均为IA元素,因离子半径和化学性质相近有一定的萃取性能外,其它共存元素基本不萃取;接触时间实验结果表明:Calix[4]arene-crown萃取Cs(Ⅰ)均为动力学快过程,在1 Omin内均能达到萃取平衡;以斜率法考察了NonCalix[4]C6、DecCalix[4]C6和DodCalix[4]C6萃取Cs(Ⅰ)反应机理,确定了萃合物组成;考察了温度对萃取分配比的影响,确定该萃取过程均为放热反应,升高温度不利于Cs(Ⅰ)的萃取;获得了溶剂萃取Cs(Ⅰ)过程中的一些重要物化参数。在酸性高放废液中,Sr(Ⅱ)和Cs(Ⅰ)均为发热元素,其同时有效分离将显著减少HLW的放射性强度。研究了冠醚衍生物分别与NonCalix[4]C6、DecCalix[4]C6或DodCalix[4]C6同时将Cs(Ⅰ)和Sr(Ⅱ)萃取分离的基础特性。基于冠醚萃取Sr(Ⅱ)和Calix[4]arene-crown衍生物萃取Cs(Ⅰ)在相同稀释剂中于相同实验条件下不能同时达到最大分配比这一结果,考察了Cs(Ⅰ)和Sr(Ⅱ)共萃取时氯仿与辛醇的稀释剂效应,确定了在氯仿:辛醇=1:1条件下Cs(Ⅰ)和Sr(Ⅱ)的共萃取行为,获得了从酸性HLW中同时萃取分离Cs(Ⅰ)和Sr(Ⅱ)的基础特性。基于超分子识别化合物对于Cs(Ⅰ)的萃取性能和机理,考察了NonCalix[4]C6、DecCalix[4]C6和DodCalix[4]C6对Cs(Ⅰ)及共存元素的逆流萃取行为,获得了理想的逆流萃取结果,Cs(Ⅰ)的5级萃取率均达到99%以上,为实现从酸性HLW中有效分离发热元素Cs(Ⅰ)并应用于乏燃料后处理技术提供了坚实的实验与理论依据。

论文目录

  • 致谢
  • 摘要
  • Abstract
  • 目录
  • 第一章 绪论
  • 1.1 核能的发展
  • 1.2 核燃料及其后处理
  • 1.3 铯(Cs)和锶(Sr)
  • 1.4 铯的分离回收方法
  • 1.4.1 沉淀法
  • 1.4.2 无机离子交换法
  • 1.4.3 离子交换树脂法
  • 1.4.4 溶剂萃取法
  • 1.4.5 萃取色谱法
  • 1.5 杯芳冠醚的合成
  • 1.5.1 杯[4]芳烃冠醚
  • 1.5.2 杯[4]全氧芳烃冠醚
  • 1.5.3 苯杂杯[4]芳烃-冠醚
  • 1.5.4 杯[4]双冠化合物
  • 1.6 本论文主要工作
  • 第二章 Calix[4]arene-crown衍生物的合成及表征
  • 2.1 主要试剂及仪器
  • 2.1.1 主要试剂
  • 2.1.2 主要仪器
  • 2.2 实验部分
  • 2.2.1 实验总路线
  • 2.2.2 TBTHCalix[4]arene的合成
  • 2.2.3 THCalix[4]arene的合成
  • 2.2.4 五甘醇二对甲苯磺酸酯的合成
  • 2.2.5 Calix[4]arene的合成
  • 2.2.6 Calix[4]arene-crown-6的合成
  • 2.3 表征与分析
  • 2.3.1 TBTHCalix[4]arene的表征
  • 2.3.2 THCalix[4]arene的表征
  • 2.3.3 五甘醇二对甲苯磺酸酯的表征
  • 2.3.4 Calix[4]arene-crown-6衍生物的表征
  • 2.4 结果与讨论
  • 2.4.1 5,11,17,23-四叔丁基-25,26,27,28-四羟基杯[4]芳烃的合成
  • 2.4.2 25,27-二(正烷氧基)-26,28-二羟基杯[4]芳烃的合成
  • 2.4.3 25,27-二(正烷氧基)杯[4]芳烃-26,28-冠[6]的合成工艺
  • 2.5 本章小结
  • 第三章 25,27-二(正壬氧基)-杯[4]芳烃-冠-6萃取性能及机理
  • 3.1 主要试剂及仪器
  • 3.1.1 实验材料
  • 3.1.2 实验仪器
  • 3.2 实验部分
  • 3.2.1 硝酸浓度对萃取平衡的影响
  • 3.2.2 接触时间对萃取平衡的影响
  • 3.2.3 萃取剂浓度对萃取平衡的影响
  • 3.2.4 Cs(Ⅰ)浓度对萃取平衡的影响
  • 3.2.5 温度对萃取平衡的影响
  • 3.3 结果与讨论
  • 3.3.1 硝酸浓度对萃取平衡的影响
  • 3.3.2 接触时间对萃取平衡的影响
  • 3.3.3 萃取机理研究
  • 3.3.4 萃取饱和容量的确定
  • 3.3.5 温度对萃取平衡的影响和热力学参数的确定
  • 3.4 本章小结
  • 第四章 25,27-二(正癸氧基)-杯[4]芳烃-冠-6萃取性能及机理
  • 4.1 主要试剂及仪器
  • 4.1.1 实验材料
  • 4.1.2 实验仪器
  • 4.2 实验部分
  • 4.2.1 硝酸浓度对萃取平衡的影响
  • 4.2.2 接触时间对萃取平衡的影响
  • 4.2.3 萃取剂浓度对萃取平衡的影响
  • 4.2.4 Cs(Ⅰ)浓度对萃取平衡的影响
  • 4.2.5 温度对萃取平衡的影响
  • 4.3 结果与讨论
  • 4.3.1 硝酸浓度对萃取平衡的影响
  • 4.3.2 接触时间对萃取平衡的影响
  • 4.3.3 萃取机理研究
  • 4.3.4 萃取饱和容量的确定
  • 4.3.5 温度对萃取平衡的影响和热力学参数的确定
  • 4.4 本章小结
  • 第五章 25,27-二(正十二烷氧基)-杯[4]芳烃-冠-6萃取性能及机理
  • 5.1 主要试剂及仪器
  • 5.1.1 实验材料
  • 5.1.2 实验仪器
  • 5.2 实验部分
  • 5.2.1 硝酸浓度对萃取平衡的影响
  • 5.2.2 接触时间对萃取平衡影响
  • 5.2.3 萃取剂浓度对萃取平衡的影响
  • 5.2.4 Cs(Ⅰ)浓度对萃取平衡的影响
  • 5.2.5 温度对萃取平衡的影响
  • 5.3 结果与讨论
  • 5.3.1 硝酸浓度对萃取平衡的影响
  • 5.3.2 接触时间对萃取平衡的影响
  • 5.3.3 萃取机理的研究
  • 5.3.4 萃取饱和容量的确定
  • 5.3.5 温度对萃取平衡影响及热力学常数的确定
  • 5.4 本章小结
  • 第六章 溶液中Cs和Sr共萃取
  • 6.1 主要试剂及仪器
  • 6.1.1 实验材料
  • 6.1.2 实验仪器
  • 6.2 实验方法
  • 6.3 稀释剂为辛醇时Cs(Ⅰ)和Sr(Ⅰ)的共萃取
  • 6.3.1 DtBuCH18C6+DodCalix[4]C4对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.3.2 DCH18C6+DodCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.3.3 辛醇的稀释剂效应
  • 6.4 Cs(Ⅰ)和Sr(Ⅱ)共萃取时的溶剂效应
  • 6.4.1 DtBuCH18C6在混合溶剂下的萃取性能
  • 6.4.2 DCH18C6在混合溶剂中的萃取性能
  • 6.4.3 DodCalix[4]C6在混合溶剂中的萃取性能
  • 6.4.4 混合溶解的确定
  • 6.5 在混合萃取体系中Cs(Ⅰ)和Sr(Ⅱ)的共萃取
  • 6.5.1 DtBuCH18C6+NonCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.5.2 DtBuCH18C6和DecCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.5.3 DtBuCH18C6+DodCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.5.4 DCH18C6+NonCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.5.5 DCH18C6+DecCalix[4]C6对Cs(Ⅰ)+Sr(Ⅱ)的共萃取
  • 6.5.6 DCH18C6+DodCalix[4]C6对Cs(Ⅰ)和Sr(Ⅱ)的共萃取
  • 6.6 Cs(Ⅰ)和Sr(Ⅱ)共萃取时协同萃取效应的研究
  • 6.6.1 DtBuCH18C6与DodCalix[4]C6协同萃取效应的研究
  • 6.6.2 DCH18C6与DodCalix[4]C6协同萃取效应的研究
  • 6.7 本章小结
  • 第七章 Cs的逆流萃取分离
  • 7.1 主要试剂及仪器
  • 7.1.1 实验材料
  • 7.1.2 实验仪器
  • 7.2 实验方法
  • 7.3 结果与讨论
  • 7.3.1 壬氧基杯[4]-冠-6的五级逆流萃取
  • 7.3.2 癸氧基杯[4]-冠-6的五级逆流萃取
  • 7.3.3 癸氧基杯[4]-冠-6的五级逆流萃取
  • 7.4 本章小结
  • 第八章 结论及展望
  • 8.1 结论
  • 8.2 课题展望
  • 参考文献
  • 作者简历
  • 相关论文文献

    • [1].Novel synthesis of N-substituted-calix[4]azacrown derivatives[J]. Chinese Chemical Letters 2010(07)
    • [2].电子化物Li_3@calix[4]pyrrole和Li_3O@calix[4]pyrrole的结构及非线性光学性质的理论研究[J]. 高等学校化学学报 2014(04)
    • [3].Novel clicked tetrathiafulvalene-calix[4]arene assemblies:Synthesis and intermolecular electron transfer toward p-chloranil[J]. Chinese Chemical Letters 2013(07)
    • [4].Synthesis and characterization of novel calix[6]phyrin derivatives[J]. Chinese Chemical Letters 2008(10)
    • [5].Efficient synthesis of water-soluble calix[4]arenes via thiol-ene "click" chemistry[J]. Chinese Chemical Letters 2013(05)
    • [6].Fe_3O_4 nanoparticles:A powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes[J]. Chinese Chemical Letters 2012(02)
    • [7].Unprecedented synthesis of chiral calix[4](aza)crowns and its potent encapsulating methanol[J]. Science in China(Series B:Chemistry) 2009(04)
    • [8].A new member of the calix[4]crown family:Facile synthesis and characterization of a calix[4]crown-9 cone conformer[J]. Chinese Chemical Letters 2009(02)
    • [9].Density Functional Theory Studies on the Intermolecular Interactions of Five Aza-calix[6]arene Host with HMX[J]. 结构化学 2010(03)
    • [10].Synthesis and structures of malonate derivative-calix [4] arene conjugates[J]. Chinese Chemical Letters 2015(07)
    • [11].Synthesis of calix[4]arene derivatives via a Pd-catalyzed Sonogashira reaction and their recognition properties towards phenols[J]. Chinese Chemical Letters 2014(02)
    • [12].The removal of Cr(Ⅵ) through polymeric supported liquid membrane by using calix[4]arene as a carrier[J]. Chinese Journal of Chemical Engineering 2019(01)
    • [13].Theoretical Studies on the Intermolecular Interactions of Aza-calix[2]arene[2]-triazines with RDX[J]. 结构化学 2011(06)
    • [14].Synthesis of Bis-substituted Calix[4]arenes and Mechanism of Substituents Effect on K~+ and Hg~(2+) Ions Transports through Liquid Membrane[J]. Journal of Donghua University(English Edition) 2011(06)
    • [15].Highly selective fluorescent chemosensor for Na~+ based on pyrene-modified calix[4]arene derivative[J]. Science in China(Series B:Chemistry) 2009(04)
    • [16].Synthesis of a novel calix[4]arene-based fluorescent ionophore and its metal ions recognition properties[J]. Chinese Chemical Letters 2009(01)
    • [17].Synthesis and Characterization of New Polyimide Containing Calix[4] arenes in the Polymer Backbone with Transport Ability[J]. Journal of Donghua University(English Edition) 2008(03)
    • [18].Solid-phase Microextraction with Benzoxy-calix[6]arene Fiber Coupled to Gas Chromatography for the Analysis of Polycyclic Aromatic Hydrocarbons in Water[J]. Chemical Research in Chinese Universities 2011(02)
    • [19].Synthesis and anti-integrase evaluation of novel calix[4]arene derivatives containing the triazolyl 1,3-diketo moiety[J]. Chinese Chemical Letters 2014(05)
    • [20].Materials design and sensing mechanism of novel calix[6]arene composite for sensitively detecting amine drugs[J]. Chinese Chemical Letters 2020(08)
    • [21].Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety via K_2CO_3-catalyzed 1,3-dipolar cycloaddition reaction[J]. Chinese Chemical Letters 2014(10)
    • [22].Two novel fluorescent calix[4]arene derivatives with benzoazole units in 1,3-alternate conformation for selective recognition to Fe~(3+) and Cr~(3+)[J]. Chinese Chemical Letters 2009(11)
    • [23].A fluorescent probe for fluoride ion based on 2-aminopyridyl-bridged calix[6]arene[J]. Chinese Chemical Letters 2009(10)
    • [24].Synthesis of novel biscalixarene-tube containing two kinds of calix[4]arene derivative units[J]. Chinese Chemical Letters 2008(01)
    • [25].One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines catalyzed by a zwtterionic Cu(Ⅱ)/calix[4]arene complex[J]. Chinese Chemical Letters 2017(05)
    • [26].Clean synthesis of calix[4]crown-5-sulfonyl cyclothiourea derivatives at room temperature in aqueous solution[J]. Chinese Chemical Letters 2009(10)
    • [27].Calix激光测厚仪[J]. 轧钢 2010(03)
    • [28].Protein surface recognition of the novel tetra-carboxylphenyl calix[4]arene to cytochrome c[J]. Chinese Chemical Letters 2008(11)
    • [29].Single-component chemically amplified i-line molecular glass photoresist based on calix[4]resorcinarenes[J]. Chinese Science Bulletin 2014(11)
    • [30].Novel supramolecular organocatalysts of hydroxyprolinamide based on calix[4]arene scaffold for the enantioselective Biginelli reaction[J]. Science China(Chemistry) 2011(11)

    标签:;  ;  ;  ;  ;  

    几种Calix“4”arene-crown衍生物合成及其萃取性能和机理研究
    下载Doc文档

    猜你喜欢