论文摘要
苏云金芽胞杆菌(Bacillus thuringiensis, Bt)是目前世界上应用范围最广的杀虫微生物,其杀虫活性主要来源于杀虫基因编码的晶体蛋白。但是传统的Bt菌株存在杀虫谱窄、杀虫毒力有限等缺点,因此,必须通过生物技术等手段寻找新的基因资源,并且构建高效广谱的Bt工程菌来满足生产的需要。目前,发掘新的杀虫基因,研究其晶体蛋白结构和作用机制都是国内外研究的热点,本论文围绕对鞘翅目害虫高毒力Bt基因的克隆、工程菌的构建、杀虫晶体蛋白杀虫特异性机理等方面进行了一系列的研究,主要结果如下:1、对蛴螬高杀虫活性cry8类基因的克隆:从自行筛选的菌株Bt145中克隆了cry8Ga2新基因,并获得正式命名。转化无晶体突变株HD-73-,构建了新的Bt工程菌株HD8G2,生物活性测定结果表明,工程菌株HD8G2与野生菌株均对鞘翅目害虫暗黑鳃金龟表现出杀虫活性,LC50分别为1.25×108 cfu/g和5.59×108 cfu/g。从自行筛选的菌株BtSU4中克隆了cry8Ha1和cry8Ia1新基因,并获得正式命名。转化无晶体突变株HD-73-,获得了两株新型Bt工程菌株HD8H和HD8I。室内生物活性测定结果表明,HD8H和HD8I都对暗黑鳃金龟幼虫有较高的杀虫活性,LC50分别为2.19×1010cfu/g和8.50×109 cfu/g,对鳞翅目害虫无杀虫活性;从HD8H提取的蛋白经胰凝乳蛋白酶活化后,对叶甲科害虫大猿叶甲表现出较高的杀虫活性,LC50为18.00μg/ml。通过RT-PCR以及Western杂交证实cry8Ha1和cry8Ia1基因在宿主菌株BtSU4中均能正常的表达。两个新基因分别申请了国家发明专利,为其应用奠定了基础。2、对鞘翅目金龟甲科和叶甲科害虫工程菌的构建:将对鞘翅目叶甲科害虫高毒力的cry3Aa7基因,通过电击转化到对蛴螬高毒力的野生菌株BtSU4和HBF-1中,得到工程菌株3A-SU4和3A-HBF。室内生物活性测定结果表明,两株工程菌不仅对蛴螬表现出较高毒力,而且还获得对叶甲科害虫的杀虫活性。工程菌3A-SU4对马铃薯甲虫、大猿叶甲和暗黑鳃金龟幼虫的LC50分别为2.62μg/ml、1.25μg/ml和3.60×108 cfu/g;3A-HBF对马铃薯甲虫、大猿叶甲和铜绿丽金龟幼虫的LC50分别为1.74μg/ml,1.10μg/ml和0.73×108 cfu/g,两株工程菌扩大了对鞘翅目害虫的杀虫谱,具有良好的开发和应用前景。3、Cry8类蛋白杀虫特异性机理的研究:从蛋白的结构、蛋白的活化、蛋白与昆虫体内受体的结合三个方面进行Cry8类蛋白杀虫特异性机理的初步探索。通过结构域互换的方法,得到Cry8Ca2和Cry8Ea1两种蛋白不同结构域组合的8种杂合蛋白,分析8种杂合蛋白对蛴螬的杀虫活性与其结构的对应关系,其中工程菌株HD (3+15()含由Cry8C的DomainⅠ和DomainⅡ及Cry8E的LoopⅡ和DomainⅢ构成的杂合基因)、HD (7+11) (含由Cry8E的DomainⅠ和DomainⅡ及Cry8C的LoopⅡ和DomainⅢ构成的杂合基因)、HD (6+10)(含由Cry8E的DomainⅠ和LoopⅠ及Cry8C的DomainⅡ和DomainⅢ构成的杂合基因)在浓度为1010 cfu /g时,对铜绿丽金龟幼虫的较正死亡率分别为44%、36%和32%。但所有的杂合蛋白都对暗黑鳃金龟幼虫失去了杀虫活性。通过Cry8Ha1、Cry8Ia1、Cry8Ga1和Cry8Ga2四种蛋白被暗黑鳃金龟中肠液与胰凝乳蛋白酶消化,胰凝乳蛋白酶活化的Cry8Ha1蛋白对大猿叶甲幼虫有较高的杀虫活性,而活化的Cry8Ga1、Cry8Ga2和Cry8Ia1蛋白对大猿叶甲幼虫无杀虫活性。用生物素标记的Cry8Ha1和Cry8Ia1蛋白均能与暗黑鳃金龟和大黑鳃金龟幼虫的BBMV结合,但是这两种蛋白仅对前者具有杀虫活性。
论文目录
相关论文文献
- [1].苏云金芽胞杆菌重组工程菌研究进展[J]. 生物产业技术 2008(02)
- [2].α-葡萄糖苷酶工程菌发酵条件的研究[J]. 食品工业科技 2008(11)
- [3].产(R)-1,3-丁二醇的工程菌构建及转化条件研究[J]. 生物技术 2020(02)
- [4].高效表达内切葡聚糖酶酿酒酵母工程菌的构建[J]. 生物工程学报 2020(10)
- [5].重组人硫氧还蛋白工程菌生物学特性稳定性的检测[J]. 微生物学通报 2013(08)
- [6].谷氨酸棒状杆菌果糖代谢阻断工程菌的构建[J]. 食品科学 2016(21)
- [7].重组海藻糖合酶工程菌高密度发酵条件的研究[J]. 食品工业科技 2012(17)
- [8].重组人B淋巴细胞刺激因子工程菌生物学特性的稳定性[J]. 中国生物制品学杂志 2008(09)
- [9].酿酒酵母工程菌产青蒿酸的发酵动力学研究[J]. 中国酿造 2020(04)
- [10].重组人胰岛素样生长因子-1工程菌发酵培养基的优化[J]. 化学与生物工程 2013(04)
- [11].5L发酵罐高密度培养番茄红素工程菌及其发酵条件优化[J]. 现代食品科技 2020(06)
- [12].虹鳟传染性造血器官坏死病核酸疫苗工程菌发酵工艺研究[J]. 水产学杂志 2016(06)
- [13].表达重组谷氨酸脱羧酶工程菌发酵条件的优化[J]. 中国生物制品学杂志 2013(01)
- [14].重组人骨形态发生蛋白-7工程菌的高密度发酵[J]. 中国生物制品学杂志 2010(05)
- [15].微囊化不可繁殖型尿酸氧化酶工程菌的制备[J]. 生物技术通讯 2008(06)
- [16].生物强化工程菌的构建及其在石化废水处理中的应用[J]. 环境科学学报 2008(05)
- [17].一株产G418单组分工程菌的构建[J]. 微生物学通报 2015(02)
- [18].细胞工程菌脱除油品中有机硫的实验研究[J]. 石油炼制与化工 2010(11)
- [19].他克莫司工程菌的构建及初步发酵工艺优化[J]. 中国医药工业杂志 2016(02)
- [20].食品级木聚糖酶黑曲霉工程菌的构建[J]. 东北农业大学学报 2013(11)
- [21].苯酚降解工程菌Bacillus subtilis dqly-2的构建[J]. 生物技术 2012(05)
- [22].产顺式-4-L-羟脯氨酸工程菌的构建及转化条件的优化[J]. 微生物学通报 2016(09)
- [23].细胞工程菌脱硫动力学的实验研究[J]. 石油与天然气化工 2011(04)
- [24].高效组成型分泌表达木素过氧化物酶酿酒酵母工程菌的构建[J]. 微生物学报 2020(05)
- [25].产虾青素酿酒酵母工程菌的构建[J]. 中国医药生物技术 2014(06)
- [26].高产γ-氨基丁酸的谷氨酸棒杆菌工程菌的构建和发酵条件优化[J]. 工业微生物 2014(03)
- [27].重组工程菌pET32a-CR1-SCR15-18/BL21(DE3)高密度发酵工艺研究[J]. 第三军医大学学报 2011(09)
- [28].溶氧反馈分批补料高密度培养枯草杆菌谷氨酰胺合成酶工程菌[J]. 南京师大学报(自然科学版) 2010(02)
- [29].2,3-吡啶二甲酰亚胺及其工程菌转化产物的高效液相色谱检测[J]. 色谱 2018(04)
- [30].天冬氨酸激酶工程菌发酵条件的响应面优化研究[J]. 农产品加工(学刊) 2011(07)