MIMO雷达参数估计方法研究

MIMO雷达参数估计方法研究

论文摘要

多输入多输出(MIMO-Multiple-Input Multiple-Output)雷达是近年来国内外研究的一个热点,其基本思想是在发射端各个发射单元同时发射不相关或正交的信号,在接收端通过匹配滤波分离出各个发射单元的信号后进行更灵活处理,以提高雷达性能。目前MIMO雷达主要分为两大类:小尺度相干MIMO雷达,其收发阵列规模小(称为小尺度),各个收(发)阵元到目标视线近似平行,目标相对于收(发)阵列具有相同的波达方向,与传统的相控阵雷达相比,这类雷达能提供更多的系统自由度,进而提高目标的可辨识度及参数估计性能:另一类是大尺度非相干MIMO雷达,其收发阵列规模足够大(称为大尺度),观测到目标的RCS不同,从而获得接收和发射两方面的空间分集增益,且在信噪比较高时,可使闪烁目标的检测性能有较大的提高。本论文主要研究了相干处理MIMO雷达参数估计方面的问题,主要工作总结如下:1.围绕MIMO雷达利用发射孔径自由度提高雷达参数估计精度的思想,研究了MIMO雷达的工作机理。针对单基MIMO雷达阵列流形存在冗余以及同时利用收发孔径自由度导致计算复杂度增大的问题,提出了去冗余ESPRIT类降维处理方法和基于二维快速傅里叶变换(2D-FFT, Fast Fourier Transform)的降维波达方向-多普勒联合估计方法。去冗余ESPRIT类降维处理方法避免了角度搜索和相位解缠绕,在一定程度上提高了波达方向和多普勒频率的估计精度。基于2D-FFT的的数据分块方法对每个接收阵元的接收数据分块作2D-FFT,将各个分块的频域数据相干积累,找到峰值点,然后在各个分块找到峰值点对应的数据构成频域快拍,利用该降维后的频域数据实现目标波达方向和多普勒频率的联合估计。该方法具有较高的分辨率,且不需要对阵元级接收数据进行协方差矩阵的估计及其特征分解,运算复杂度低,尤其当阵元数和快拍数都较多时,优越性更加显著。2.针对双基MIMO雷达,提出了在接收端同时实现发射角度(DOD, Direction of Departure)和接收角度(DOA, Direction of Arrival)联合估计的几种方法,包括利用发射阵或接收阵单元形成旋转因子实现了DOD和DOA自动配对的无需阵列平移的ESPRIT类联合估计方法、多天线发射两天线接收的联合MUSIC-ESPRIT方法和DOD-DOA联合估计分维处理方法,实现了低复杂度的多维参数估计。其中基于2阶矩和基于4阶累积量的MUSIC-ESPRIT方法能有效地实现白噪声和色噪声背景下的多目标角度估计。在接收端,通过单天线的MUSIC和双天线的ESPRIT算法分别估计目标的DOD和DOA,将两维参数估计转化为两个一维形式,降低了运算量和计算复杂度。3.研究了长期困扰理论上高性能阵列技术应用的阵列误差校正与阵列处理稳健性问题。针对与信号波达方向无关的幅相误差问题,提出了双基地MIMO雷达多目标角度和幅相误差联合估计方法。该方法利用联合对角化估计含误差的接收和发射阵列流形,并通过最小化相位误差的平方和,分别得到DOD和DOA的估计,再利用估计得到的角度,通过幅相误差自校正算法得到幅相误差估计的闭式解。该方法不需要幅相误差的先验知识,对误差具有一定的稳健性。针对存在互耦的情况,提出了双基地MIMO雷达互耦自校正方法。该方法利用等距线阵下互耦矩阵的Toeplitz特性和联合收发导向矢量Kronecker直积的性质,将两维角度搜索转化为两个一维搜索,从而降低了运算量,再根据估计得到的角度可得等效的收发互耦系数,并通过奇异值分解估计发射阵列和接收阵列的互耦系数。4.针对机载MIMO雷达目标参数估计性能受到谱展宽的地物杂波严重影响的问题,研究了基于最大似然的目标波达方向和多普勒频率联合估计方法。该方法直接利用接收数据的最大似然函数估计目标参数,但涉及两维搜索,运算量大。为了降低最大似然的计算复杂度,提出了基于二维离散傅里叶变换(2D-DFT, Discrete Fourier Transform)的波达方向-多普勒频率联合估计方法和基于空时自适应单脉冲近似实现的波达方向-多普勒频率估计方法,显著降低了运算量。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 研究背景及其意义
  • 1.2 研究历史与现状
  • 1.3 论文的内容和安排
  • 第二章 MIMO雷达的信号模型
  • 2.1 单基地MIMO雷达信号模型
  • 2.1.1 地面单基地MIMO雷达
  • 2.1.2 机载单基地MIMO雷达
  • 2.2 双基地MIMO雷达信号模型
  • 2.3 本章小结
  • 第三章 单基地MIMO雷达参数估计
  • 3.1 引言
  • 3.2 单基地MIMO雷达参数估计的一般方法
  • 3.3 角度-多普勒联合估计的去冗余降维方法
  • 3.3.1 角度-多普勒联合估计方法
  • 3.3.2 计算机性能仿真
  • 3.4 基于2D-FFT降维的子孔径MUSIC方法
  • 3.4.1 基于2D-FFT降维的参数估计
  • 3.4.2 运算复杂度分析
  • 3.4.3 计算机性能仿真
  • 3.5 基于FFT降维的稀疏目标角度估计方法
  • 3.5.1 CS的基本原理
  • 3.5.2 FFT降维的稀疏角度估计
  • 3.5.3 计算机性能仿真
  • 3.6 本章小结
  • 第四章 双基地MIMO雷达角度估计
  • 4.1 引言
  • 4.2 DOD-DOA联合估计的分维处理方法
  • 4.2.1 DOD-DOA联合估计的分维处理方法
  • 4.2.2 计算机仿真实验
  • 4.3 多天线发射双天线接收双基MIMO雷达系统角度估计
  • 4.3.1 基于2阶矩方法
  • 4.3.2 基于4阶累积量方法
  • 4.3.3 计算机仿真实验
  • 4.4 利用发射阵或接收阵构造ESPRIT的多目标DOD-DOA联合估计方法
  • 4.4.1 基于接收阵的ESPRIT多目标DOD-DOA联合估计方法
  • 4.4.2 基于发射阵的ESPRIT多目标DOD-DOA联合估计方法
  • 4.4.2.1 多基线干涉仪测向
  • 4.4.2.2 多基线数据融合方法
  • 4.4.2.3 运算复杂度分析
  • 4.4.3 计算机仿真实验
  • 4.5 本章小结
  • 第五章 稳健的双基地MIMO雷达参数估计
  • 5.1 引言
  • 5.2 存在幅相误差下的双基地MIMO雷达多目标参数估计
  • 5.2.1 DOD及DOA估计
  • 5.2.2 收、发幅相误差的估计
  • 5.2.3 计算机仿真实验
  • 5.3 双基地MIMO雷达互耦校正方法
  • 5.3.1 互耦校正方法
  • 5.3.2 计算复杂度分析
  • 5.3.3 计算机仿真实验
  • 5.4 本章小结
  • 第六章 机载MIMO雷达目标参数估计
  • 6.1 引言
  • 6.2 基于最大似然的目标参数估计
  • 6.2.1 基于交替最大化的最大似然估计
  • 6.2.2 基于2D-DFT的最大似然估计
  • 6.3 空时自适应单脉冲方法
  • 6.4 计算机性能仿真
  • 6.5 本章小结
  • 第七章 结束语
  • 7.1 全文工作总结
  • 7.2 工作展望
  • 致谢
  • 参考文献
  • 作者在读期间的研究成果
  • 相关论文文献

    • [1].基于MIMO类脑情感学习回路的横-纵向综合控制驾驶员模型[J]. 吉林大学学报(工学版) 2020(01)
    • [2].大规模MIMO系统导频污染问题研究[J]. 无线互联科技 2020(04)
    • [3].基于自适应MIMO技术的深空探测对流层延迟预测[J]. 红外与激光工程 2020(05)
    • [4].基于黎曼流形的MIMO雷达目标检测方法[J]. 吉林大学学报(信息科学版) 2020(03)
    • [5].5G室内分布系统建设方案及MIMO技术使用分析[J]. 数字技术与应用 2020(05)
    • [6].探究MIMO技术在短波通信基带处理中的应用[J]. 产业科技创新 2019(05)
    • [7].一种MIMO非高斯振动的逆多步预测法[J]. 振动.测试与诊断 2020(04)
    • [8].基于升空大规模MIMO平台的无源定位方法[J]. 通信技术 2020(06)
    • [9].角度估计辅助量子密钥分发的毫米波大规模MIMO系统安全传输方案[J]. 信号处理 2020(08)
    • [10].MIMO雷达抗有源干扰性能分析[J]. 科技风 2020(32)
    • [11].联合时移和空间划分方法抑制大规模MIMO导频污染[J]. 通信学报 2017(02)
    • [12].大规模MIMO天线设计及对5G系统的影响分析[J]. 网络安全技术与应用 2017(05)
    • [13].MIMO系统中均衡与预编码技术的对比研究[J]. 信息通信 2017(07)
    • [14].基于空时域压缩的大规模MIMO导频污染抑制算法[J]. 计算机工程 2017(07)
    • [15].5G大规模MIMO高低频信道模型对比探讨[J]. 移动通信 2017(14)
    • [16].大规模MIMO系统中功率分配算法的能效研究[J]. 郑州大学学报(工学版) 2017(04)
    • [17].空间调制系统检测方法在5G大规模MIMO中的应用研究[J]. 科技资讯 2015(34)
    • [18].大规模MIMO系统中导频污染研究进展[J]. 广东通信技术 2016(05)
    • [19].大规模MIMO系统中导频污染空域降低方法[J]. 通信技术 2016(08)
    • [20].大规模MIMO预编码算法研究与分析[J]. 通信技术 2016(09)
    • [21].基于集中式MIMO雷达的多目标跟踪功率分配优化算法[J]. 空军工程大学学报(自然科学版) 2019(05)
    • [22].基于大规模MIMO技术的5G无线信道建模及仿真[J]. 邮电设计技术 2020(07)
    • [23].全双工大规模MIMO中继频谱效率研究[J]. 通信技术 2017(02)
    • [24].航空发动机MIMO系统的闭环辨识与故障诊断算法[J]. 测控技术 2017(04)
    • [25].大规模MIMO下最优预编码选择策略研究[J]. 电视技术 2016(05)
    • [26].MIMO系统中空时编码性能仿真和分析[J]. 电信科学 2015(02)
    • [27].对MIMO雷达角度欺骗干扰研究[J]. 电子测量技术 2015(03)
    • [28].MIMO双基地雷达及其应用展望[J]. 大众科技 2015(04)
    • [29].大规模MIMO系统中基于子空间跟踪的半盲信道估计[J]. 应用科学学报 2015(05)
    • [30].MIMO技术在煤矿井下通信中的应用[J]. 科技视界 2015(33)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

    MIMO雷达参数估计方法研究
    下载Doc文档

    猜你喜欢