敖燕环:粉煤灰的改性及用于酸性矿井水处理的研究论文

敖燕环:粉煤灰的改性及用于酸性矿井水处理的研究论文

本文主要研究内容

作者敖燕环(2019)在《粉煤灰的改性及用于酸性矿井水处理的研究》一文中研究指出:矿业的开采过程伴随着酸性矿井水的产生,矿井水通常含有多种重金属离子,如锌、铜等重金属离子。同时,工业生产过程会产生工业固废物,如钢渣、粉煤灰等。本文主要研究将工业固体废物用于处理酸性矿井水,以达到以废治废的目的。以粉煤灰为活性基质,以Na2C03为改性剂,通过800℃C高温加热的火法改性制得改性粉煤灰。通过FA和MFA对Cu2+、Zn2+的静态吸附实验,由单因素实验确定了最佳吸附条件和吸附性能,分析了粉煤灰吸附Cu2+、Zn2+的吸附动力学和等温吸附模型。通过可渗透反应墙的动态吸附实验,研究了FA、MFA、MFA与钢渣复配对模拟酸性矿井水中Cu2+、Zn2+的吸附效果。在静态吸附实验中,单因素结果显示,MFA对模拟废水处理效果比FA好。对于体积为100mL,浓度为10mg/L的Cu2+溶液,在温度为30℃时,最佳条件为:MFA投加量0.2g,pH>4,反应时间60min,此时,MFA对Cu2+的吸附量为4.80mg/g,去除率为96.00%。对于体积为100mL,浓度为10mg/L的Zn2+溶液,在温度为30℃时,最佳条件为:投加量0.4g,pH>6,反应时间60min,此时,MFA对Zn2+的吸附量为2.44mg/g,去除率为97.66%。MFA对Zn2+和Cu2+的吸附过程符合二级动力学模拟,在三个不同温度下R2均高于0.98,二级动力学拟合的显著性水平高于一级动力学拟合和Weber-Morris内扩散方程拟合,经计算的后的qe与实测值比较接近,说明吸附过程主要由化学吸附控制。Freundlich吸附等温模型和Langmuir吸附等温模型都能较好地拟合MFA对Cu2+和Zn2+的吸附过程,但在同一温度下Freundlich吸附等温模型的相关系数比Langmuir吸附等温模型的更高,即MFA对Cu2+和Zn2+的等温吸附过程更符合Freundlich吸附等温模型,说明MFA对Cu2+和Zn2+的吸附过程可能是多层吸附。吸附量随温度升高而增大,说明吸附过程是吸热反应,升温有利于MFA对Cu2+和Zn2+的吸附。在PRB动态吸附实验中,在实验气温8~14℃,进水pH为3的条件下,PRB运行了 19天。三个PRB对Cu2+和Zn2+的去除率在运行20h内去除率接近100%,在20~200h之间去除率逐渐下降,运行200h后趋于稳定。其中,在20~200h之间,以FA为填料的①号PRB对Zn2+的去除率在5.35%~39.76%之间,对Cu2+的去除率在48.04%~88.91%之间;以MFA为填料的②号PRB对Zn2+的去除率在30.26%~80.22%之间,对Cu2+的去除率接近100%;以MFA与钢渣混合物为填料的③号PRB对Zn2+的去除率在27.81%~72.39%之间,对Cu2+的去除率在98.94%~99.99%之间。三种填料对Cu2+和Zn2+去除率大小关系为:MFA>钢渣与MFA混合物>FA。三个PRB对废水pH都具有一定调节作用,进水pH为3,出水pH>6.65,模拟PRB实验结果表明,改性粉煤灰作为吸附介质对酸性矿井水处理具有可适用性。

Abstract

kuang ye de kai cai guo cheng ban sui zhao suan xing kuang jing shui de chan sheng ,kuang jing shui tong chang han you duo chong chong jin shu li zi ,ru xin 、tong deng chong jin shu li zi 。tong shi ,gong ye sheng chan guo cheng hui chan sheng gong ye gu fei wu ,ru gang zha 、fen mei hui deng 。ben wen zhu yao yan jiu jiang gong ye gu ti fei wu yong yu chu li suan xing kuang jing shui ,yi da dao yi fei zhi fei de mu de 。yi fen mei hui wei huo xing ji zhi ,yi Na2C03wei gai xing ji ,tong guo 800℃Cgao wen jia re de huo fa gai xing zhi de gai xing fen mei hui 。tong guo FAhe MFAdui Cu2+、Zn2+de jing tai xi fu shi yan ,you chan yin su shi yan que ding le zui jia xi fu tiao jian he xi fu xing neng ,fen xi le fen mei hui xi fu Cu2+、Zn2+de xi fu dong li xue he deng wen xi fu mo xing 。tong guo ke shen tou fan ying qiang de dong tai xi fu shi yan ,yan jiu le FA、MFA、MFAyu gang zha fu pei dui mo ni suan xing kuang jing shui zhong Cu2+、Zn2+de xi fu xiao guo 。zai jing tai xi fu shi yan zhong ,chan yin su jie guo xian shi ,MFAdui mo ni fei shui chu li xiao guo bi FAhao 。dui yu ti ji wei 100mL,nong du wei 10mg/Lde Cu2+rong ye ,zai wen du wei 30℃shi ,zui jia tiao jian wei :MFAtou jia liang 0.2g,pH>4,fan ying shi jian 60min,ci shi ,MFAdui Cu2+de xi fu liang wei 4.80mg/g,qu chu lv wei 96.00%。dui yu ti ji wei 100mL,nong du wei 10mg/Lde Zn2+rong ye ,zai wen du wei 30℃shi ,zui jia tiao jian wei :tou jia liang 0.4g,pH>6,fan ying shi jian 60min,ci shi ,MFAdui Zn2+de xi fu liang wei 2.44mg/g,qu chu lv wei 97.66%。MFAdui Zn2+he Cu2+de xi fu guo cheng fu ge er ji dong li xue mo ni ,zai san ge bu tong wen du xia R2jun gao yu 0.98,er ji dong li xue ni ge de xian zhe xing shui ping gao yu yi ji dong li xue ni ge he Weber-Morrisnei kuo san fang cheng ni ge ,jing ji suan de hou de qeyu shi ce zhi bi jiao jie jin ,shui ming xi fu guo cheng zhu yao you hua xue xi fu kong zhi 。Freundlichxi fu deng wen mo xing he Langmuirxi fu deng wen mo xing dou neng jiao hao de ni ge MFAdui Cu2+he Zn2+de xi fu guo cheng ,dan zai tong yi wen du xia Freundlichxi fu deng wen mo xing de xiang guan ji shu bi Langmuirxi fu deng wen mo xing de geng gao ,ji MFAdui Cu2+he Zn2+de deng wen xi fu guo cheng geng fu ge Freundlichxi fu deng wen mo xing ,shui ming MFAdui Cu2+he Zn2+de xi fu guo cheng ke neng shi duo ceng xi fu 。xi fu liang sui wen du sheng gao er zeng da ,shui ming xi fu guo cheng shi xi re fan ying ,sheng wen you li yu MFAdui Cu2+he Zn2+de xi fu 。zai PRBdong tai xi fu shi yan zhong ,zai shi yan qi wen 8~14℃,jin shui pHwei 3de tiao jian xia ,PRByun hang le 19tian 。san ge PRBdui Cu2+he Zn2+de qu chu lv zai yun hang 20hnei qu chu lv jie jin 100%,zai 20~200hzhi jian qu chu lv zhu jian xia jiang ,yun hang 200hhou qu yu wen ding 。ji zhong ,zai 20~200hzhi jian ,yi FAwei tian liao de ①hao PRBdui Zn2+de qu chu lv zai 5.35%~39.76%zhi jian ,dui Cu2+de qu chu lv zai 48.04%~88.91%zhi jian ;yi MFAwei tian liao de ②hao PRBdui Zn2+de qu chu lv zai 30.26%~80.22%zhi jian ,dui Cu2+de qu chu lv jie jin 100%;yi MFAyu gang zha hun ge wu wei tian liao de ③hao PRBdui Zn2+de qu chu lv zai 27.81%~72.39%zhi jian ,dui Cu2+de qu chu lv zai 98.94%~99.99%zhi jian 。san chong tian liao dui Cu2+he Zn2+qu chu lv da xiao guan ji wei :MFA>gang zha yu MFAhun ge wu >FA。san ge PRBdui fei shui pHdou ju you yi ding diao jie zuo yong ,jin shui pHwei 3,chu shui pH>6.65,mo ni PRBshi yan jie guo biao ming ,gai xing fen mei hui zuo wei xi fu jie zhi dui suan xing kuang jing shui chu li ju you ke kuo yong xing 。

论文参考文献

  • [1].鱼洞河流域酸性矿井水被动处理实验研究[D]. 梁浩乾.中国矿业大学2019
  • [2].基于Visual MODFLOW对PRB原位治理酸性矿井水模拟[D]. 汪强.安徽工程大学2015
  • [3].酸性矿井水对地下水污染规律的数值模拟研究[D]. 王岩.辽宁工程技术大学2007
  • [4].煤矿矿井水井下处理就地复用工艺研究[D]. 李建红.河北工程大学2012
  • [5].煤矿酸性矿井水特征、机理实验及防治研究[D]. 蒋群.安徽理工大学2007
  • [6].用赤泥去除酸性矿井水中重金属的研究[D]. 于华通.北京化工大学2006
  • [7].关闭煤矿水—岩—气反应模拟研究[D]. 徐潇.中国矿业大学2017
  • [8].可渗透反应床固定化硫酸盐还原菌协同Fe-C原位治理酸性矿井水中重金属离子的研究[D]. 黄志.安徽工程大学2013
  • 读者推荐
  • [1].梅州五华横陂足球特色小镇建设现状研究[D]. 黄增松.广州大学2019
  • [2].磁性壳聚糖/粉煤灰复合材料的制备及其对染料吸附性能的研究[D]. 林小红.内蒙古师范大学2019
  • [3].新型粉煤灰改性材料对土壤镉的钝化修复效应与机制研究[D]. 赵航航.西北农林科技大学2019
  • [4].粉煤灰掺量对陕西黄土稳定性的影响研究[D]. 桑南(PHOAK SAMNANG).西北农林科技大学2019
  • [5].闭坑煤矿对喀斯特地区泉水污染研究[D]. 陈亚洲.中国矿业大学2019
  • [6].碱熔-酸浸提取粉煤灰中稀土元素研究[D]. 汤梦成.中国矿业大学2019
  • [7].改性粉煤灰对准东煤燃烧过程中气相碱金属的捕捉机理研究[D]. 张雪慧.新疆大学2019
  • [8].基于测码伪距的高动态高精度卫星导航事后处理技术研究[D]. 苏焕荣.南京航空航天大学2018
  • [9].电驱动水下滑翔器机械系统的设计与实验研究[D]. 马彦青.天津大学2007
  • [10].“K2FeO4-TiO2”法处理矿井水工艺研究[D]. 翟进.安徽理工大学2007
  • 论文详细介绍

    论文作者分别是来自华北科技学院的敖燕环,发表于刊物华北科技学院2019-10-09论文,是一篇关于粉煤灰论文,酸性矿井水论文,吸附论文,可渗透反应墙论文,华北科技学院2019-10-09论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自华北科技学院2019-10-09论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    敖燕环:粉煤灰的改性及用于酸性矿井水处理的研究论文
    下载Doc文档

    猜你喜欢