支持向量机在嵌入式控制系统的实现研究

支持向量机在嵌入式控制系统的实现研究

论文摘要

支持向量机(Support Vector Machine, SVM)作为统计学习理论的最新研究成果,成为近十几年来机器学习领域研究热点,由于其目标是在小样本情况下追求最优的泛化性能,从而在较大程度上解决了传统机器学习方法中的非线性、局部极值、过学习、维数灾难等问题;以结构风险最小化代替经验风险最小化、凸二次规划、Mercer核函数和解的稀疏性等特点,使得SVM算法具有结构简单、全局最优以及推广能力强等优点,自从被提出之日起,就在诸多复杂问题上凸显出其性能优势。但是,由于SVM在训练过程中需要消耗较大的存储资源,特别是在训练样本数量较多时,其训练速度往往成为实际应用的瓶颈,这在一定程度上制约了该算法的推广和应用。而在现实生活中各种嵌入式控制系统的使用越来越广泛,客观上也要求有更优秀的智能算法在这些平台上高效的应用,因此SVM算法在嵌入式系统中实现、应用研究成为不少研究人员努力的方向,也是比较具有实际意义的研究方向。现有的关于支持向量机算法在嵌入式系统平台上实现的研究大多关注于硬件平台的优化,包括并行处理单元的使用、分布式处理、存储单元的使用等,通常是以硬件花销换取性能提升。本文重点从软件的层面上研究支持向量机算法在嵌入式控制系统的实现,结合嵌入式控制系统的硬件资源极其有限的特性,以及支持向量机在训练算法上可以进行必要的改进的特点,力图以少量的性能损失换取实时学习速度的提升;首先根据目标平台的字长约束,将训练样本特征值进行必要的归一化、定点化或整型化处理后转化为定点数或整型数,以一定的精度损失带来训练过程数据计算的快捷性;然后根据字长k及设定的模型惩罚系数对标准SVM算法中的拉格朗日参数规范化为一定范围内的整数值,并作为训练过程待优化的参数,因此训练过程即为对每个在2K个整型值中的拉格朗日参数寻找最佳值作为最终模型参数;针对整型参数支持向量机算法模型中去除了等式约束条件而序贯最小优化(Sequential Minimum Optimum,SMO)算法不再适用的实际情况,文中采用改进的SMO算法,通过对优化目标的分析,提出了新的约束条件来选择最佳的优化参数,通过迭代的方法将训练过程的求解规模缩小至更小的范围,以此来提高整个训练过程的速度。最后,论文采用人工生成数据集和MNIST手写数字库数据集作为实验素材,以普通PC机和嵌入式实验系统为平台,对改进算法在多类分类问题上的应用进行了测试,并验证了这些改进方法的可行性,通过实验结果对这种平台上的性能进行了分析。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 前言
  • 1.2 研究意义及研究现状
  • 1.3 本文主要工作
  • 1.4 论文结构组织
  • 第二章 机器学习和统计学习理论
  • 2.1 机器学习的研究
  • 2.1.1 机器学习结构
  • 2.1.2 机器学习问题
  • 2.1.3 经验风险最小化
  • 2.1.4 机器学习的推广能力
  • 2.2 统计学习理论
  • 2.2.1 学习过程一致性和VC维理论
  • 2.2.2 推广性的界
  • 2.2.3 结构风险最小化
  • 第三章 支持向量机
  • 3.1 最优分类超平面
  • 3.2 线性支持向量机
  • 3.3 非线性支持向量机
  • 3.4 回归支持向量机
  • 3.5 核函数
  • 3.6 多类分类支持向量机
  • 3.6.1 “一对一”多类分类法
  • 3.6.2 “一对其余”多类分类法
  • 3.6.3 有向无环图多分类法
  • 3.6.4 决策树多分类法
  • 3.6.5 纠错编码多分类法
  • 第四章 基于嵌入式控制系统的支持向量机算法
  • 4.1 嵌入式控制系统的SVM实现问题
  • 4.1.1 嵌入式控制系统的特点
  • 4.1.2 算法实现的问题
  • 4.2 参数定点化表示
  • 4.2.1 嵌入式系统中的整型数和定点数
  • 4.2.2 输入数据的整型优化
  • 4.2.3 模型参数的整型优化
  • 4.3 训练算法的改进
  • 第五章 算法实现及性能分析
  • 5.1 人工数据多类分类
  • 5.2 手写数字识别
  • 第六章 总结与展望
  • 致谢
  • 参考文献
  • 附录
  • 详细摘要
  • 相关论文文献

    • [1].嵌入式控制系统数据实时调试方法仿真[J]. 计算机仿真 2019(12)
    • [2].通用式微生物发酵罐嵌入式控制系统的设计[J]. 重庆科技学院学报(自然科学版) 2020(04)
    • [3].“嵌入式控制系统设计”课程的特点和教学方法研究[J]. 科技创新导报 2010(30)
    • [4].电脑加油机嵌入式控制系统的设计与实现[J]. 机械与电子 2009(05)
    • [5].“嵌入式控制系统”在我院研制成功[J]. 甘肃科学学报 2009(02)
    • [6].嵌入式控制系统及应用课程的改革探索[J]. 福建电脑 2019(09)
    • [7].基于嵌入式控制系统低成本物品引导车设计[J]. 农家参谋 2019(21)
    • [8].嵌入式控制系统的串口扩展设计方法[J]. 电子世界 2016(06)
    • [9].嵌入式控制系统建立显示字库问题研究[J]. 现代显示 2009(12)
    • [10].基于元模型的嵌入式控制系统开发框架[J]. 深圳信息职业技术学院学报 2008(02)
    • [11].基于软PLC的嵌入式控制系统设计[J]. 电力信息与通信技术 2019(06)
    • [12].双弧脉冲MIG焊嵌入式控制系统设计及试验分析[J]. 焊接学报 2017(09)
    • [13].面向嵌入式控制系统的组件化模型集成开发方法[J]. 制造业自动化 2009(12)
    • [14].基于嵌入式控制系统低成本物品引导车设计[J]. 微特电机 2019(02)
    • [15].自动缝纫机嵌入式控制系统设计[J]. 现代电子技术 2018(21)
    • [16].嵌入式控制系统的软件测试及其应用[J]. 电子技术与软件工程 2016(21)
    • [17].嵌入式控制系统电路抗干扰设计研究[J]. 今日电子 2008(03)
    • [18].机械手远程操作实验嵌入式控制系统[J]. 微计算机信息 2008(29)
    • [19].基于STM32的智能充电桩嵌入式控制系统设计[J]. 数字通信世界 2019(02)
    • [20].医用智能轨道物流小车嵌入式控制系统设计[J]. 机械制造与自动化 2017(04)
    • [21].己二酸装置离心机嵌入式控制系统的开放式改造[J]. 化工自动化及仪表 2018(09)
    • [22].嵌入式控制系统在工业控制中的应用[J]. 电脑知识与技术 2010(05)
    • [23].FPGA的优势[J]. 软件 2010(06)
    • [24].锐德世提供超值服务[J]. 现代制造 2008(06)
    • [25].软件设计模式在嵌入式控制系统中的应用[J]. 单片机与嵌入式系统应用 2015(02)
    • [26].基于Modbus/TCP的嵌入式生物发酵控制器的设计[J]. 机械与电子 2008(02)
    • [27].CPT系统中的嵌入式控制系统体系构建[J]. 科技视界 2014(21)
    • [28].智能保密柜嵌入式控制系统的设计与实现[J]. 现代电子技术 2011(04)
    • [29].基于STM32F103的大包装喷涂嵌入式控制系统设计[J]. 造船技术 2016(04)
    • [30].基于ARM9的嵌入式控制系统设计与实现[J]. 微计算机信息 2008(22)

    标签:;  ;  ;  ;  

    支持向量机在嵌入式控制系统的实现研究
    下载Doc文档

    猜你喜欢