RAFT聚合机理及动力学研究

RAFT聚合机理及动力学研究

论文摘要

可逆加成-裂解链转移(Reversible Addition-Fragmentation chain Transfer,RAFT)自由基聚合方法以其聚合条件温和、单体适应范围广等独特的优点,近年来备受关注。本论文围绕RAFT聚合过程当中的一些独特现象展开研究和讨论,基于我们的实验结果对RAFT机理提出了自己的观点。同时借助模型反应来深入理解RAFT过程。最后利用聚合含官能团的甲基丙烯酸酯类单体方法合成了一系列两亲性聚合物,并简要研究了其在水溶液中的自组装行为。主要内容如下:各种链转移剂热稳定性的研究。RAFT阻聚动力学是近几年研究的一个热门课题,主要存在两种截然不同的观点:中间态自由基的交叉终止理论和中间态自由基的慢裂解理论。我们组发现一种常用的链转移剂CDB在加热情况下会发生热分解,分解产生的双硫酸会对RAFT过程产生一定的阻聚影响,同时使聚合部分不可控,即产物分子量不可控和分布变宽。另外,大分子链转移剂PMMA-SCSPh也发生类似的热分解现象,对RAFT过程也有相似的影响;因此我们认为系统研究各种链转移剂的热稳定性很有必要。我们合成了近十种双硫酯、三硫酯及磺原酸酯,利用HPLC、GPC、1H NMR等表征手段研究其热分解行为。分析了链转移剂结构对热稳定性的影响,并给出了它们热分解的活化能和指前因子。我们探讨了双硫酯不同R和Z基团对其热稳定的影响,发现当Z基团为—Ph时,不同R基团的双硫酯热稳定性在RAFT聚合反应的温度范围内依下次序减小:-CH(CH3)Ph>-CH(Ph)CH2OC(=O)Ph>-PSC(CH3)2Ph>-C(CH3)2Ph>-C(CH3)2CN>-PMMAC(CH3)2Ph当R基团为-CH(CH3)Ph时,不同Z基团的双硫酯热稳定性在RAFT聚合反应的温度范围内依下次序减小:-CH2Ph>-Ph(p-OCH3)>-Ph>-Ph(p-NO2)有趣的是这些变化顺序与双硫酯的链转移速率常数的变化顺序一致。另外我们比较了双硫酯、三硫酯和磺原酸酯的热稳定性,发现后两者的热稳定性要远远好于前者,但前者的链转移能力一般要大于后两者,所以如何平衡链转移剂的链转移能力和其热稳定性之间的矛盾仍然是个很大的挑战。RAFT聚合苯乙烯和甲基丙烯酸甲酯动力学行为比较。我们在RAFT聚会中发现的另一个现象就是不同的单体/RAFT试剂对具有不同的聚合行为。以最常见的两种单体甲基丙烯酸甲酯(MMA)和苯乙烯(St)为例。本文首次利用GPC从小分子开始检测RAFT聚合过程。结果表明CDB调控St和MMA时聚合行为截然不同。前者在链增长阶段具有高度的选择性,而后者却表现出普通自由基聚合和活性聚合“杂化”的行为,并且反应后期仍然有相当量的CDB残留在体系中,这些残留的CDB正是造成实测分子量与理论分子量偏差的原因。我们用数值迭代的方法得到了CDB的链转移速率常数Ctr在40~280之间。尽管与CSIRO组和Fukuda组得到的结果相近,但是其却随着起始CDB/MMA的比例改变而改变,我们认为可能是双硫酯的热分解影响了动力学过程。最后我们直观的比较了CDB和两种大分子链转移剂的链转移能力,得出CDB≈PMMA-SCSPh>PS-SCSPh。通过GPC检测还可以直接比较不同链转移剂的链转移能力,直观又便捷,为研究RAFT聚合过程提供了一条新途径。模型反应研究RAFT聚合可行性分析。为了更深入的理解RAFT聚合过程,我们构建了一个模型反应:即由烷氧基胺与双硫酯进行交换反应,烷氧基胺均裂产生的烷基自由基将会向双硫酯进行链转移(RAFT过程),双硫酯的引入对纯烷氧基胺分解动力学造成的影响可以提供RAFT过程的许多信息。作为模型化合物,无论是双硫酯还是烷氧基胺在研究的试验条件下都不应该发生其他的副反应,故而考查它们的热稳定性及其他性能非常重要。本文就是围绕这个目的,力在寻找最佳的模型化合物来研究RAFT机理。含氟两亲性聚合物的合成及其自组装的研究。两亲性聚合物由于其独特的拓扑结构和自组装行为得到了人们广泛的关注。本文运用RAFT方法合成了一系列不同链长比例的三嵌段共聚物:聚(甲基丙烯酸甲酯)—聚(甲基丙烯酸缩水甘油酯)—聚(甲基丙烯酸特丁酯)(PMMA-b-PGMA-b-PtBMA),然后利用GMA中含有的环氧官能团,合成含氟的一段,最后将PtBMA一段酸解为亲水段PtAA,即形成了双亲双憎的嵌段共聚物。并对其在水溶液中的自组装行为也进行了初步的研究。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 活性自由基聚合概述
  • 1.1.1 稳定自由基聚合和氮氧调控的聚合(SFRP和NMP)
  • 1.1.2 原子转移自由基聚合(ATRP)
  • 1.1.3 可逆加成裂解链转移聚合(RAFT)
  • 1.2 可逆加成-裂解链转移聚合(RAFT)机理
  • 1.2.1 自由基存储实验
  • 1.2.2 ESI-MS,MALDI-TOF
  • 1.2.3 SEC
  • 1.2.4 NMR
  • 1.3 RAFT聚合的动力学
  • 1.3.1 阻聚效应(Retardation Effect)
  • 1.3.1.1 阻聚效应的本质
  • 1.3.1.2 阻聚模型
  • 1.3.2 诱导现象(Induction/Inhibition)
  • 1.4 研究问题和方向
  • 参考文献
  • 第二章 RAFT链转移剂的热分解
  • 2.1 前言
  • 2.2 实验部分
  • 2.2.1 材料和试剂
  • 2.2.2 部分药品的纯化
  • 2.2.3 反应
  • 2.2.4 测试与表征方法
  • 2.3 结果与讨论
  • 2.3.1 双硫酯的热稳定性
  • 2.3.1.1 R基团的影响
  • 2.3.1.2 Z基团的影响
  • 2.3.2 三硫酯、磺原酸酯等链转移剂的热稳定性
  • 2.4 本章小结
  • 附:各链转移剂加热颜色变化图
  • 参考文献
  • 第三章 RAFT聚合苯乙烯和甲基丙烯酸甲酯动力学行为比较
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 材料和试剂
  • 3.2.2 主要化学试剂的纯化
  • 3.2.3 反应
  • 3.2.4 测试与表征方法
  • 3.3 结果与讨论
  • 3.3.1 CDB调控MMA和St动力学行为比较
  • 3.3.2 不同链转移剂之间链转移速率常数的比较
  • 3.4 本章小结
  • 参考文献
  • 第四章 模型反应研究RAFT聚合可行性分析
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 材料和试剂
  • 4.2.2 部分药品的纯化
  • 4.2.3 反应
  • 4.2.4 测试与表征方法
  • 4.3 结果与讨论
  • 4.3.1 小分子烷氧基胺和小分子双硫酯的交换
  • 4.3.2 大分子烷氧基胺和小分子双硫酯的交换
  • 4.4 本章小结
  • 参考文献
  • 第五章 含氟两亲性聚合物的合成及其自组装的研究
  • 5.1 前言
  • 5.2 实验部分
  • 5.2.1 材料和试剂
  • 5.2.2 主要化学试剂的纯化
  • 5.2.3 反应
  • 5.2.4 测试与表征方法
  • 5.3 结果与讨论
  • 5.3.1 含氟三嵌段聚合物的合成
  • 5.3.2 含氟三嵌段聚合物在水中的自组装
  • 5.4 本章小结
  • 参考文献
  • 作者简历
  • 博士期间整理发表的论文
  • 致谢
  • 相关论文文献

    • [1].Lewis pairs polymerization of polar vinyl monomers[J]. Science Bulletin 2019(24)
    • [2].A personal journey on using polymerization in aqueous dispersed media to synthesize polymers with branched structures[J]. Chinese Chemical Letters 2019(12)
    • [3].Synergetic organocatalysis for stereoregular ring-opening polymerization of O-carboxyanhydrides to isotactic functionalized polyesters[J]. 材料导报 2020(12)
    • [4].Analysis and research on the processing threshold of femtosecond laser[J]. Optoelectronics Letters 2020(05)
    • [5].Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene[J]. Chinese Journal of Polymer Science 2019(03)
    • [6].Organocatalytic polymerization[J]. Science China(Chemistry) 2019(09)
    • [7].In situ molecular level visualization of RAFT polymerization by AIEgen-labelled agents[J]. Science China(Chemistry) 2018(10)
    • [8].Topochemical polymerization of diphenyldiacetylene-based materials and the relevant application in photocatalysis[J]. Chinese Chemical Letters 2018(11)
    • [9].Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives[J]. Chinese Journal of Polymer Science 2018(12)
    • [10].Two-photon polymerization fabrication and Raman spectroscopy research of SU-8 photoresist using the femtosecond laser[J]. Optoelectronics Letters 2017(03)
    • [11].Progress on intelligent hydrogels based on RAFT polymerization:Design strategy, fabrication and the applications for controlled drug delivery[J]. Chinese Chemical Letters 2020(01)
    • [12].Combination of olefin insertion polymerization and olefin metathesis to extend the topology and composition of polyolefins[J]. Science China(Chemistry) 2020(06)
    • [13].Step-growth polymerization of traptavidin-DNA conjugates for plasmonic nanostructures[J]. Chinese Chemical Letters 2020(05)
    • [14].Self-assisted stereospecific polymerization of unmasked polar 4-methylthio-1-butene[J]. Science China(Chemistry) 2019(06)
    • [15].Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis,characterization and biocompatibility[J]. Plasma Science and Technology 2017(08)
    • [16].Electrochemical polymerization of 2,6-pyridinediamine and characterization of the resulting polymer[J]. Chinese Chemical Letters 2012(11)
    • [17].Relationship between polymerization degree and cementitious activity of iron ore tailings[J]. International Journal of Minerals Metallurgy and Materials 2010(01)
    • [18].Preparation of nano-compounded polyolefin materials through in situ polymerization technique:status quo and future prospects[J]. Chinese Science Bulletin 2009(01)
    • [19].Correlation between ~(29)Si polymerization and cementitious activity of coal gangue[J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) 2009(09)
    • [20].Room temperature polymerization of alkyl isocyanates catalyzed by rare earth Schiff base complexes[J]. Science in China(Series B:Chemistry) 2009(11)
    • [21].Studies on the Structures and Spectra of Benzothiophene Oligomers[J]. 结构化学 2008(04)
    • [22].Dynamic Monte Carlo Simulation on Polymerization of Encapsulant[J]. Chinese Journal of Polymer Science 2019(02)
    • [23].Lewis acid/base modulation in β-diiminate zinc-catalyzed switchable ring-opening polymerization of rac-lactide[J]. Science China(Chemistry) 2019(04)
    • [24].Pressure-induced polymerization of butyndioic acid and its Li~+ salt[J]. Chinese Chemical Letters 2018(02)
    • [25].Polyaniline-based electrocatalysts through emulsion polymerization:Electrochemical and electrocatalytic performances[J]. Journal of Energy Chemistry 2017(01)
    • [26].Polyaniline nanostructures tuning with oxidants in interfacial polymerization system[J]. Progress in Natural Science:Materials International 2015(05)
    • [27].Anionic polymerization of fluorine-substituted phenyl methacrylates[J]. Science China(Chemistry) 2015(01)
    • [28].Catalytic synthesis of perfluorolyethers[J]. Journal of Central South University 2013(03)
    • [29].Controlled/living ring-opening polymerization of ε-caprolactone catalyzed by phosphoric acid[J]. Science China(Chemistry) 2012(07)
    • [30].A novel scalable synthesis process of PPTA by coupling n-pentane evaporation for polymerization heat removal[J]. Chinese Chemical Letters 2011(11)

    标签:;  ;  ;  ;  ;  

    RAFT聚合机理及动力学研究
    下载Doc文档

    猜你喜欢