论文摘要
光聚合(光固化)技术是20世纪60年代问世的新型绿色技术,是指在光(紫外或可见光)的作用下,液态低聚物(包括单体)经过交联聚合而形成固态产物的过程。光聚合体系一般包括以下三种主要组分:低聚物(或称预聚物、树脂);单体(又称活性稀释剂);光引发剂。单体是其中的重要组份之一,其不仅能溶解和稀释低聚物,调节体系的粘度,而且参与光固化过程,影响涂料的光固化速度和固化膜的各种性能,因此单体的开发是光固化涂料的重要环节。低聚物(oligomer),又叫寡聚物或预聚物(prepolymer),是光固化产品中比例最大的组分之一,它和活性稀释剂一起占到整个配方质量的90%以上;它是光固化配方的基体树脂,构成固化产品的基本骨架,即固化后产品的基本性能(硬度、柔韧性、附着力、光学性能、耐老化等)主要由低聚物树脂决定。低聚物的合成与选择也是光固化配方设计中重要的一环。本文用甲基丙烯酰氯分别与乙醇胺、二乙醇胺和三乙醇胺反应合成了三种甲基丙烯酰氧基单体。以实时红外光谱(RT-IR)法研究了三种单体的光聚合动力学性质,考察了不同单体、不同引发剂和引发剂浓度、不同光强对聚合性能的影响。结果表明,随着引发剂浓度的增大,单体转化率、最大反应速率都增大,随着光强的增大,单体转化率、最大反应速率都降低。与二苯甲酮(BP)相比,2-羟基-2-甲基-1-苯基丙酮(1173)对三种单体具有较好的引发效果。同时,本文还合成了四种含叔胺结构的多官能度聚氨酯丙烯酸酯,其合成分三步进行,第一步,二异氰酸酯(TDI或IPDI)与等摩尔量的HEA在40℃(TDI)或50℃(IPDI)下反应,得到的产物为HEA-TDI或HEA-IPDI;第二步反应为含叔胺结构的多元醇的合成,在此步反应中,二乙醇胺(DEOHA)与商业化多官能度丙烯酸酯单体乙氧化三甲氧基丙烷三丙烯酸酯(SR 454)和乙氧化季戊四醇四丙烯酸酯(SR 494)通过迈克尔加成反应得到多元醇。此合成的第三步为HEA-TDI或HEA-IPDI与第二步反应得到的含叔胺结构的多元醇在78℃下进行反应,最终得到含叔胺结构的多官能度聚氨酯丙烯酸酯。同样的,以实时红外光谱(RT-IR)法研究了四种含叔胺结构的多官能度聚氨酯丙烯酸酯的光聚合动力学性质,结果表明合成的多官能度聚氨酯丙烯酸酯与类似的商业化多官能聚氨酯丙烯酸酯比较,能够在没有助引发剂叔胺的存在下,由二苯甲酮引发光聚合,并且具有较好的光聚合性能。