本文主要研究内容
作者(2019)在《Dispersed distribution derived integrated anode for lithium ion battery》一文中研究指出:With the development of portable communication devices and electric vehicles, there is a great need for energy storage devices with lighter weight and higher energy density. In this paper, a new method by combining waster-paper-synthesized conductive paper(CP) and active material Mn O2 together is developed to obtain a new type of anode without any binder for lithium ion batteries. By this way, we can obtain low density anode with active material in CP, instead of the commonly-used heavy metal current collector. Also, binder has been abandoned, which are usually used to combine active material into anode, to further decrease weight. The multi walled carbon nanotube(MWCNT) was added in serves as a component of CP and the conductive agent for active material. Compared to traditional anode coated on Cu current collector, the CP-combined anode can greatly improve the electrochemical performance of active material Mn O2. It can let more particles to fully participate in the reaction and therefore boost the specific capacity to a great extent(about 3 times higher). It delivered an initial specific capacity of 1629.9 m A h g-1 at a current density of 100 m A g-1 and maintained about 67% even after 100 cycles.What’s more, it shows reversible capacity of about 260 m A h g-1 at high current density of 1000 m A h g-1.Our original synthesis method of anode, which shows far-reaching referential value and environmental significance, can be generalized to other electrodes and other battery systems.
Abstract
With the development of portable communication devices and electric vehicles, there is a great need for energy storage devices with lighter weight and higher energy density. In this paper, a new method by combining waster-paper-synthesized conductive paper(CP) and active material Mn O2 together is developed to obtain a new type of anode without any binder for lithium ion batteries. By this way, we can obtain low density anode with active material in CP, instead of the commonly-used heavy metal current collector. Also, binder has been abandoned, which are usually used to combine active material into anode, to further decrease weight. The multi walled carbon nanotube(MWCNT) was added in serves as a component of CP and the conductive agent for active material. Compared to traditional anode coated on Cu current collector, the CP-combined anode can greatly improve the electrochemical performance of active material Mn O2. It can let more particles to fully participate in the reaction and therefore boost the specific capacity to a great extent(about 3 times higher). It delivered an initial specific capacity of 1629.9 m A h g-1 at a current density of 100 m A g-1 and maintained about 67% even after 100 cycles.What’s more, it shows reversible capacity of about 260 m A h g-1 at high current density of 1000 m A h g-1.Our original synthesis method of anode, which shows far-reaching referential value and environmental significance, can be generalized to other electrodes and other battery systems.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Materials Science & Technology的,发表于刊物Journal of Materials Science & Technology2019年10期论文,是一篇关于,Journal of Materials Science & Technology2019年10期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Materials Science & Technology2019年10期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。