Study on Some Elliptic and Parabolic Equations

Study on Some Elliptic and Parabolic Equations

论文摘要

The work of this thesis deals with existence and nonexistence of solutions for semilinear elliptic and parabolic equations on bounded domains in RN. This is an interesting and a widely investigated field.(Ⅰ) The general form of the elliptic equations under Dirichlet boundary con-dition that we study is whereΩis a bounded domain with smooth boundary in RN(N≥3), x = (y, z)∈Ω(?) Rk×RN-k = RN-, 2≤k<N,λ∈R, t∈(0, 2) and 2*(t):=2(N-t)/N-2 is the critical Sobolev-Hardy exponent for the Sobolev embedding H01(Ω)→L2*(t)(Ω,|y|-t).Throughout the thesis the approach is variational, as (0.0.1) is the Euler-Lagrange equation of the functionalTo state the main results, it is convenient to introduce the "limiting problem" (see [36]) of (0.0.1) as Let F0∞: D1,2(RN)→R given by denote the energy functional corresponding to the limiting problem (P0∞).Our results mainly focus on existence and nonexistence of nontrivial solutions to problem (0.0.1) in a bounded domain in RN. The notion of solution we refer to is in the sense of critical points for the Euler functional related to the equation. The first result is the following global compactness theorem Theorem 0.0.1.If N≥3,λ∈R,{um} (?) H01(Ω) such that Jλ(um)≤c, DJλ(um)→0 strongly in H-1(Ω) as m→∞.Then (i) um can be decomposed as where wm→0 in H01(Ω) and u0 is a critical point of Jλ(u) and l∈N.For 1≤j≤l,Rmj→∞and{(0,zmj)} converge to (0,z0j)∈Ωas m→∞,v0j are solutions of (P0∞).The usual proof of this theorem is based on rescaling arguments. Such meth-ods have been repeatedly used to extract convergent subsequences from families of solutions or minimizing sequences to nonlinear variational problems.One of the original results of this thesis the following existence theorems Theorem 0.0.2. Assume N≥4, t=1 andλ∈(0,λ1). Then problem (0.0.1) has a positive solution in H01 (Ω).Actuary, to prove the existence result in Theorem 0.0.2, we just need com-pactness for"low-energy" (P.S)-sequences. Such a property is proven in Lemma 4.2.2. Since the cases N=3 and N≥4 are quite different, we prove the following theorem by arguments similar to those used by Jannelli in [26]. Theorem 0.0.3. If N = 3 and t = 1, problem (0.0.1) has at least one solu-tion u∈H01 (Ω) whenλ*<λ<λ1, whereλ* is a suitable positive number.Based on the result of Theorem 0.0.2 and the linking (dual) theory respec-tively, we prove the sign-changing solutions of problem (0.0.1).In a bounded domain the problem (0.0.1) does not have a solution in general due to the critical exponent. The nonexistence phenomenon is due to the lack of compactness of Jλ. We prove the following nonexistence theorem Theorem 0.0.4. Letλ≤0 andΩ(?)RN be an open set with smooth boundary and is strictly star-shaped with respect to some point(0,z0).Supposc in addi-tion (?)Ωis orthogonal to the singular set, then problem (0.0.1), has a nontrivial solution only ifΩ=RN.(Ⅱ) The general form of the parabolic equations with Cauchy boundary con-dition that we study is in Lq(RN), q=N(γ-1)/2>1,and fi(u)∈C1,(i=0,1…,n), where C0, Ci are some positive constants andβ,γ>1 are fixed parameters.The various functions are essentially pure power functions. The function f0(u) behaves lik, |u|γand the other functions fi(u) all behave like |u|β.The result without the fi is well-known and first proved in [41]. Our treat-ment differs from [17], in that we use a different space.Here, the proof of existence result is based on a contraction mapping argu-ment in an appropriate space of functions which yields global in time solutions automatically.

论文目录

  • Acknowledgements
  • Abstract
  • 1 Introduetion
  • 2 Preliminaries
  • 2.1 Introduction
  • 2.2 Functional setting and weak solutions
  • 2.3 Hardy-Sobolev inequality
  • 2.4 Regularity results
  • 3 A global compactness result
  • 4 Existence and nonexistence results
  • 4.1 Introduction
  • 4.2 Existence of positive solutions
  • 4.2.1 The case N≥4
  • 4.2.2 The case N=3
  • 4.3 Nonexistence of nontrivial solutions
  • 5 Existence of sign-changing solutions
  • 6 Global solutions of a semilinear parabolic equation
  • References
  • List of Published PaPer
  • 相关论文文献

    • [1].博士学位论文质量内部管理与外部监督实践——基于国家学位论文抽检制度[J]. 宁德师范学院学报(自然科学版) 2016(04)
    • [2].俄罗斯副博士学位论文评阅模式及其合理借鉴[J]. 研究生教育研究 2016(06)
    • [3].博士学位论文分级评阅制度的探索与实践[J]. 学位与研究生教育 2017(02)
    • [4].知识生产模式视角下的博士学位论文评价理念及标准初探[J]. 学位与研究生教育 2017(02)
    • [5].研究生培养成就[J]. 中国林业教育 2017(S1)
    • [6].2004-2014年“高等教育学优秀博士学位论文”获奖情况分析[J]. 中国高教研究 2014(12)
    • [7].对提高博士研究生培养质量的分析与思考——基于公共卫生与预防医学学科全国优秀博士学位论文[J]. 教育教学论坛 2015(12)
    • [8].国外高校硕博士学位论文强制性开放获取研究[J]. 大学图书馆学报 2015(01)
    • [9].博士学位论文目录[J]. 中国宪法年刊 2019(00)
    • [10].为张磊博士学位论文《历史在这里沉思》作[J]. 新文学评论 2016(04)
    • [11].博士学位论文目录[J]. 中国宪法年刊 2016(00)
    • [12].觉嘎:在青藏高原上放飞交响乐[J]. 中国西藏 2017(03)
    • [13].设立校级优秀博士学位论文创新基金的实践及思考[J]. 今日中国论坛 2013(21)
    • [14].2010年全国优秀博士学位论文名单获批准公布[J]. 中国研究生 2010(11)
    • [15].翻译研究博士学位论文选题问题分析[J]. 东方翻译 2010(02)
    • [16].博士学位论文目录[J]. 中国宪法年刊 2017(00)
    • [17].学科交叉博士学位论文评审中隐性沟通的研究与实现[J]. 学位与研究生教育 2020(01)
    • [18].关于开展2020年中国环境科学学会优秀博士学位论文征集活动的通知[J]. 中国环境科学 2020(04)
    • [19].博士学位论文质量提升方法研究[J]. 科技资讯 2018(29)
    • [20].2003-2012年临床医学全国优秀博士学位论文调查分析[J]. 中国高等医学教育 2015(02)
    • [21].博士学位论文评阅与答辩中的权利触及与保障[J]. 中国教育法制评论 2019(01)
    • [22].博士学位论文目录[J]. 中国宪法年刊 2018(00)
    • [23].博士学位论文写作的“五个意识”[J]. 中国研究生 2014(07)
    • [24].华南理工7篇博士学位论文获全国优秀博士论文和提名论文[J]. 华南理工大学学报(社会科学版) 2014(03)
    • [25].全国优秀博士学位论文校际与省际分布特征分析[J]. 教学研究 2014(02)
    • [26].我校4篇博士学位论文入选2012年全国优秀博士学位论文[J]. 浙江大学学报(农业与生命科学版) 2013(02)
    • [27].我校创优秀博士学位论文资助的实践与探索[J]. 教育教学论坛 2012(08)
    • [28].东华大学喜获第八篇全国优秀博士学位论文[J]. 纺织教育 2012(01)
    • [29].关于申报2012年“中国岩石力学与工程学会优秀博士学位论文奖”通知[J]. 岩土力学 2012(04)
    • [30].历史学科全国优秀博士学位论文分析[J]. 学位与研究生教育 2012(05)
    Study on Some Elliptic and Parabolic Equations
    下载Doc文档

    猜你喜欢