Darboux变换求三个相关方程的孤子解

Darboux变换求三个相关方程的孤子解

论文摘要

本文主要利用达布变换和达布阵的基本理论,求解三个方程新的精确解.并分别以u=0,v=1作为种子解,利用达布变换得到三个方程新的多孤子解,讨论了N=1,N=2时的情况,并选择适当参数做出了精确解的图像.

论文目录

  • 摘要
  • Abstract
  • 一 引言
  • 二 HBK方程的达布变换
  • 三 BK方程的达布变换
  • 四 KP方程的孤立子解
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].可积系统多孤子解的全反演对称表达式[J]. 物理学报 2020(01)
    • [2].一个二分量b族方程及其尖峰孤子解[J]. 内蒙古师范大学学报(自然科学汉文版) 2020(02)
    • [3].光孤子传输中奇异波和孤子解的动力学特性研究[J]. 重庆理工大学学报(自然科学) 2020(04)
    • [4].变系数非线性薛定谔方程的明暗孤子解[J]. 南昌大学学报(理科版) 2018(06)
    • [5].一类非线性偏微分方程的多孤子解(英文)[J]. 重庆理工大学学报(自然科学) 2017(03)
    • [6].横向非周期调制的五次非线性薛定谔方程的精确孤子解[J]. 量子光学学报 2015(02)
    • [7].(3+1)维非线性方程的呼吸类和周期类孤子解[J]. 广西科技大学学报 2015(04)
    • [8].超对称非交换修正手征模型的孤子-反孤子解(英文)[J]. 南京师大学报(自然科学版) 2014(04)
    • [9].一类耦合方程的单孤子解[J]. 纯粹数学与应用数学 2013(03)
    • [10].Chaffee-Infante方程的多孤子解及其汇合现象[J]. 山东理工大学学报(自然科学版) 2011(05)
    • [11].(2+1)维Konopelchenko-Dubrovsky方程新的多孤子解[J]. 物理学报 2010(08)
    • [12].离散非线性薛定谔方程的新孤子解[J]. 丽水学院学报 2009(05)
    • [13].(2+1)维广义Bogoyavlensky-Konopelchenko方程的混合型孤子解[J]. 南昌大学学报(理科版) 2018(04)
    • [14].(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解[J]. 数学物理学报 2018(06)
    • [15].一类微分-差分方程的孤子解[J]. 吉林大学学报(理学版) 2019(04)
    • [16].变系数(2+1)维分散长波方程的精确类孤子解[J]. 辽宁工程技术大学学报(自然科学版) 2017(08)
    • [17].粒子方程的孤子解及其推广和相应的各种统一[J]. 商丘师范学院学报 2014(12)
    • [18].简化的双线性法求(2+1)维非对称Nizhnik-Novikov-Veselov系统的多孤子解[J]. 四川师范大学学报(自然科学版) 2015(02)
    • [19].浅水波方程的暗孤子解[J]. 厦门理工学院学报 2015(05)
    • [20].非线性波动方程最简形式尖峰孤子解的存在性及求解方法[J]. 安徽大学学报(自然科学版) 2013(03)
    • [21].第一型浅水波方程的单孤子和双孤子解[J]. 西南民族大学学报(自然科学版) 2012(01)
    • [22].一种由光滑孤子解构造尖峰孤子解的方法[J]. 物理学报 2011(12)
    • [23].一类新型浅水波方程的2-孤子解[J]. 山东大学学报(理学版) 2010(11)
    • [24].Ginzburg-Landau方程的暗孤子解及其稳定性分析[J]. 太原师范学院学报(自然科学版) 2009(03)
    • [25].一类非线性偏微分方程的n-孤子解[J]. 沈阳师范大学学报(自然科学版) 2019(03)
    • [26].非齐次光纤介质中非线性薛定谔方程的相似变换与精确解[J]. 宁波大学学报(理工版) 2016(03)
    • [27].广义耦合非线性薛定谔方程的N-孤子解[J]. 量子光学学报 2020(03)
    • [28].齐次平衡法寻找广义Caudrey-Dodd-Gibbon-Kaeada方程的多孤子解[J]. 应用数学与计算数学学报 2011(02)
    • [29].5阶变系数Korteweg-de Vries方程的光孤子解[J]. 四川理工学院学报(自然科学版) 2016(05)
    • [30].变系数耦合非线性薛定谔方程的二孤子解及其相互作用[J]. 量子光学学报 2019(02)

    标签:;  ;  ;  ;  ;  

    Darboux变换求三个相关方程的孤子解
    下载Doc文档

    猜你喜欢